
Tallinn 2020

TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Piret Gorban 185967IADB

BOOK SWAP

Building Distributed Systems

Project Scope

Supervisor: Andres Käver

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Piret Gorban

02.03.2020

3

Table of contents

1 Introduction ... 5

2 Diagrams .. 6

3 Analysis and testing of soft delete and update in SQL .. 7

4 Analysis of Repository Pattern and Data Access Object ... 13

5 Summary .. 15

References .. 16

4

List of figures

Figure 1. Entity relationship diagram .. 6

Figure 2. One to many (optional) relationship ... 7

Figure 3. One to one (optional) relationship... 7

Figure 4. Tables “Method of delivery” and “Location” before update 9

Figure 5. Tables “Method of delivery” and “Location” after soft update 9

Figure 6. SQL code example of soft updating method of delivery name 10

Figure 7. SQL code example of soft deleting children when parent gets soft deleted ... 10

Figure 8. Code example of soft updating child in one to optional one relationship 11

Figure 9. Tables “Book condition” and “Comment” after soft updating one comment . 12

Figure 10. Interactions of the repository .. 13

Figure 11. Relationships for the DAO pattern .. 14

5

1 Introduction

The goal of this project is to create an application where users can swap books. As a

frequent reader author has great sympathy for applications related with books. There is a

web page to swap books in Estonia but there is no harm doing it again.

The idea of book swap is that people can exchange books they don´t need any more and

collect new books without paying for them. Registered users can see books that are

available for offering at the moment and can add their own books. Condition of the book

has to be marked so that other users would know what they ordered. Users can choose if

their books can be seen by other users or not.

If user can’t find the book they have from existing list they can add new book that will be

seen by all users. They can also add new authors, genres and languages.

Books will be exchanged using parcel machines. System supports adding many types of

parcel machines (Omniva, SmartPost etc). Payment methods are not included in current

application because necessary parcel size is chosen by sender and receiver pays for the

package in parcel machine when receiving the order.

Users can follow orders status – receiver can see if sender has posted the package and

sender can view if receiver has received the package. Order can be cancelled by the

sender.

Users can rate other users who they have exchanged books with. Average rating of all

individual ratings is displayed for every user so that people wound know which users to

trust to deliver the transactions.

Users who have admin role can see User Manager where they can create and delete users

and roles and add or remove roles from users. In ASP .NET application administrators

also have full CRUD for every object and separate view for language strings.

Application has support for different languages (currently English and Estonian).

6

2 Diagrams

Figure 1. Entity relationship diagram.

7

3 Analysis and testing of soft delete and update in SQL

The purpose of this chapter is to analyse which methods are usable to implement soft

delete and update in SQL by using MS SQL Server. Sample tables to test possibilities are

chosen from the project. One to many relationship is presented by “Method of delivery”

and “Locations”. One method of delivery can have many locations. For example, Itella

Smartpost can have parcel machines at Mustamäe Keskus, at Mustika Keskus etc.

Described relationship is shown in figure 2.

Figure 2. One to many (optional) relationship.

One to one relationship (with one end optional) is not represented in this project so the

author will use a fictional table to test that type of relationship. Let’s say that book

condition can have but must not have one comment that is an entity of comments table.

Described relationship is shown in figure 3.

Figure 3. One to one (optional) relationship.

The main idea of soft delete and soft update is to prevent data loss. All changes of all

objects can be traced and nothing gets actually deleted from the database. Created at and

deleted at columns will provide the information when the record was created and when

“deleted”. There lays the question if created at should stay the same for all of the versions

8

of one record or should it represent the moment record was changed. Author of this work

tends to support the first option. The time of the changes made with the record can be

seen based on the Deleted at field of previous version. Created at field of every version

represents the initial creation time of the first version.

There are many possibilities to implement soft delete and update. With single table it’s

not that complicated. One way is to add an additional field to point to previous version of

the record (with null value for first record). When record gets updated or deleted then

actually new record with new Id is generated and the old one gets “deleted” – Deleted at

field will be filled with current timestamp. Connection with the previous version will be

made via additional field. Current version can be distinguished by a null value in deleted

at field. To make navigation easier field pointing to next version can also be added. But

this solution requires adding additional fields with no other purpose than navigation

between different versions.

The other problem with this solution becomes obvious when foreign key – primary key

relationships are created between tables. Creating new records with new Id-s taints

relationships if not updated. And updating every relationship while making changes or

deleting records is a massive amount of work for objects with one to many relationships

and big datasets. So that solution is probably not the best for soft delete and update.

Better solution seems to be to use composite primary and foreign keys. That would allow

duplicate Id-s for many versions of one record (what is not possible for Id being the sole

primary key). Authors first idea was to make a composite key from Id and Deleted at field

but that was not an option with Deleted at being null for current record because primary

key doesn’t allow null values. So the other option was to use Id and Created at value. But

that was also problematic. If Created at value is changed when record is updated the

relationships stay connected with previous version and we are back in situation described

in previous section. If the Created at value is not changed then we don’t have unique

primary key any more – all the composite primary keys are the same for every version of

the record and that goes in conflict with the definition of primary key.

So the solution for composite primary key seems to be to still use the combination of Id

and Deleted at field. But instead of leaving Deleted at field null, filling it with some future

value (like maximum datetime value in MS SQL – '12/31/9999 23:59:59.9999'

9

[1]). When record is created the Deleted at field is filled with some agreed future value.

When record is “deleted”, that future value is replaced with current timestamp. That

would break parent – child relationship but that gets fixed by using cascade update (SQL

command “ON UPDATE CASCADE” [2]) by changing childs foreign key when parents

primary key changes. Example on tables “Method of delivery” and “Location” with filled

Deleted at value is shown in figure 4. Tables contain only current records, no updates or

“deletes” have been made yet.

Figure 4. Tables “Method of delivery” and “Location” before update.

For updating the record new copy of old record is made, necessary fields get new values

and Deleted at field gets agreed future value. Old version of the record gets current

timestamp to Deleted at field. Id-s for old and new versions stay identical. In that case the

relationships created before using a composite foreign key stay attached to current

version. Example of output after updating method of delivery name from “Itella

Smartpost” to “Smartpost” is shown in figure 5. Records in Locations table have

connections to method of delivery that isn’t deleted. SQL code example how this result

was achieved is shown in figure 6.

Figure 5. Tables “Method of delivery” and “Location” after soft update.

10

Figure 6. SQL code example of soft updating method of delivery name.

Question is also if child records should get “deleted” if parent gets “deleted”. That can

also depend on business logic but in most cases they should. That can go really deep and

complicated with many intersecting relationships and should be thought through for every

relationship before implementing it. SQL code example of soft deleting children when

parent gets soft deleted is show in figure 7.

Figure

7. SQL code example of soft deleting children when parent gets soft deleted.

With this approach children records (on one to many relationships many side and one to

one relationships optional side) will have connection to current records and lose

connection with “deleted” records. That could be enough for some cases but might be

problem in other cases. There is no easy way to get the current state of the database at the

certain moment of time. Queries and joins must be made separately to get the valid data

at that moment.

One option to relieve that problem is to create duplicate records in database that stay

connected to versions that get “deleted” while updating data. That means that every time

parent record gets updated so do the children. And its children etc. Updating child doesn’t

have that problem because parent can have connections to both current and historical

records. “Deleted” children can be distinguished by Deleted at value. That will create a

lots of new records in database and many changes of children are caused only by parent

11

record changes. But the state of database can be distinguished with ease for every moment

of time by filtering Created at and Deleted at fields.

One to one relationship acts as a special case of one to many relationship. Difference is

that parent can have only one child. That could be implemented on database level by using

unique composite foreign key of parents Id and parents Deleted at field (SQL command

CONSTRAINT UNIQUE [3]). If parent record gets “deleted” so should the child. If child

gets “deleted” there is two options. One is to leave “deleted” child connected to parent if

no new child needs to be added. But that only postpones the problem that occurs when

new child needs to be added.

The other possibility is to create “deleted” version of parent that will stay connected to

“deleted” child and current parent will be disconnected from “deleted” child. That will

prevent problems when new child needs to be added. Updating is the same for parent and

child. New versions of both – parent and child is needed to keep the relationships. Figure

8 shows SQL code example for soft updating child in one to one (optional) relationship.

First copy of book condition is created which gets soft deleted. Then new version of

comment is created and old version gets soft deleted. New version of comment stays

connected to current book condition, soft deleted versions get connected to each other.

Result of both tables is shown in figure 9.

Figure 8. Code example of soft updating child in one to optional one relationship.

12

Figure 9. Tables “Book condition” and “Comment” after soft updating one comment.

When trying to get the current state of tables records at certain moment of time we hit

next problem. Since the created at time shows the creation time of the first version and is

the same for all records we can’t filter records by creation time. If we want records from

comments table that were active in the beginning of 2010 and we filter comments by

condition Comment.Deleted_at > '2010-01-01 00:00:00.000' we get

two results – one that was active at that moment and the other that is active now but was

actually created later.

One way to solve that problem is that Created at field should always change when new

version is created. Then records can be filtered with conditions

Comment.Created_at <= '2010-01-01 00:00:00.000' AND

Comment.Deleted_at > '2010-01-01 00:00:00.000'. But that creates

another problem – initial creation time can’t be seen from current record if there are older

versions. But it’s possible to query creation time from first version and display that on

newer versions.

The other possibility is to add another field to records – Modified at. Then Created at will

show initial creation time of first version and Modified at will get the value of the moment

the record was actually created. Then every record will have straight access to all values

necessary and active records can be queried with conditions Comment.Modified_at

<= '2010-01-01 00:00:00.000' AND Comment.Deleted_at > '2010-

01-01 00:00:00.000'. Which solution is better probably depends of the project.

In conclusion it can be said that soft delete and soft update are complicated subjects that

have no single correct answer. All possibilities must be thought through according to

business logic of every project to find the best solution.

13

4 Analysis of Repository Pattern and Data Access Object

By definition Repository Pattern mediates between the domain and data mapping layers

using a collection-like interface for accessing domain objects [4]. It allows to separate

business logic from database operations like saving and retrieving data and remove

duplicate code for same actions of different objects. Controllers should not deal with

database operations directly but to delegate them to repositories. That ensures that

business logic is designed only based on real needs not considering the actions needed to

be done to handle database operations. Client side doesn’t have to know how to access

data and can use provided methods from the interfaces. The Repository Pattern also

allows to test applications more easily with unit tests by allowing to use test data from

some other source than applications real database. The interactions of the repository are

shown in figure 10. Business logic layer communicates with repository via business

entities and repository communicates with data source. Data source can be switched by

modifying only the repository and no changes are necessary in business logic.

Figure 10. Interactions of the repository. [5]

The idea of the Data Access Object (DAO) pattern is the same as the Repository Pattern.

Relationships for the DAO pattern are shown in figure 11. DAO is an intermediate object

between business logic and data source. Transfer object represents the business entity of

repository model. Database actions are implemented in DAO without business object

knowing the specifics how it is done.

14

Figure 11. Relationships for the DAO pattern. [6]

But the difference between repository and DAO patterns is that DAO is closer to database

and handles more data specific operations. Repositories should contain methods like find

and add an entity or get collection of entities. For more specific actions like update entity

repositories usually use separate objects like unit of work (UOW). UOW coordinates the

work of multiple repositories by creating a single database context class shared by all of

them [7]. DAO contains the logic of all methods (add, find, update etc.) in itself.

Repositories can be the layer on top of the DAO but not the other way around.

In current BookSwap project the repository pattern has been implemented. For removing

duplicate code there is two layers of repository interfaces – base repository for all

common methods and specific interfaces to add domain object specific methods. Specific

interfaces inherit from base repository and actual repositories implement those interfaces.

In addition to repository pattern UOW is implemented. From database operations UOW

is currently only handling saving data (changes) to database. Add, find, remove and

update operations are the responsibility of repositories which somewhat goes in

controversy with division of responsibilities described above. That should be taken into

consideration designing the further changes in project structure.

15

5 Summary

Three levels on mappings to map objects from one Data Transfer Object (DTO) to another

were used in this project. Domain objects were mapped to Data Access Layer (DAL)

DTOs in repositories. DAL DTOs were mapped to Business Logic Layer (BLL) DTOs in

services. ASP .NET controllers use BLL DTOs in View Models. REST controllers use

Public Api DTOs, mapping to those happens in REST controllers. AutoMapper is used

to map flat objects (for example in add and update). More complex object mappings with

many layers of nested objects use custom mappers for every level.

Base projects not specific to current application were pushed to NuGet Gallery as

packages and can also be used in further projects. Swagger was used to describe API

structure.

16

References

[1] Microsoft SQL Docs. datetime (Transact-SQL). https://docs.microsoft.com/en-us/sql/t-
sql/data-types/datetime-transact-sql?view=sql-server-ver15 (7.03.2020)

[2] SQL Server Tutorial. SQL Server FOREIGN KEY. https://www.sqlservertutorial.net/ sql-
server-basics/sql-server-foreign-key/ (7.03.2020)

[3] W3Schools tutorials site. SQL UNIQUE Constraint. https://www.w3schools.com/
sql/sql_unique.asp (7.03.2020)

[4] E. Hieatt, R. Mee, Repository. https://martinfowler.com/eaaCatalog/repository.html
(23.03.2020)

[5] The Repository Pattern. Microsoft Docs. https://docs.microsoft.com/en-us/previous-
versions/msp-n-p/ff649690(v=pandp.10) (23.03.2020)

[6] Core J2EE Patterns - Data Access Object. Oracle Technology Network.
https://www.oracle.com/technetwork/java/dataaccessobject-138824.html (23.03.2020)

[7] Implementing the Repository and Unit of Work Patterns. Microsoft Docs.
https://docs.microsoft.com/en-us/aspnet/mvc/overview/older-versions/getting-started-with-ef-5-
using-mvc-4/implementing-the-repository-and-unit-of-work-patterns-in-an-asp-net-mvc-
application (23.03.2020)

