
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Hendrik Jaanimägi 192846IADB

Modular Threat Detection and Response

Framework for Unmanned Vehicle Systems

“Web Applications with C#” coursework

Supervisor: Andres Käver

Tallinn 2024

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references

to the literature and the work of others have been referred to. This thesis has not been

presented for examination anywhere else.

Author: Hendrik Jaanimägi

12.02.2024

Table of Contents

Author’s declaration of originality ..2

Table of Figures ...5

1. Introduction ..6

1.1 Background .. 6

1.2 Problem Statement ... 6

1.3 Research Focus ... 6

1.4 Significance .. 7

2. Analysis ..8

2.1 Market Research.. 8

1. Overview ...8
2.1.1 Methodology ... 8
2.1.2 Findings... 9
2.1.3 Implications... 9
2.1.4 Conclusion .. 10

2.2 Detailed Problem Statement ... 10
2.2.1 Introduction ... 10
2.2.2 The Unique Context of Unmanned Vehicle Systems .. 10
2.2.3 Challenges Identified .. 11
2.2.4 Implications for Development .. 12
2.2.5 Conclusion .. 12

2.3 Comparison of Solutions .. 12
2.3.1 Introduction ... 12
2.3.2 Network Inspection Tools ... 12
2.3.3 Log Collection and Parsing Tools ... 13
2.3.4 Automated Response Software with Operator Intervention ... 14
2.3.5 Conclusion .. 15

2.4 Methods and Tools Selection ... 15
2.4.1 Introduction ... 15
2.4.2 Rationale for JSON Usage .. 15
2.4.3 Rationale for Docker Containerization ... 16
2.4.4 Selected Tools and Technologies ... 17
2.4.5 Conclusion .. 17

3. Synthesis ... 18

4. Implementation ... 19

4.1 Developing the Solution .. 19

4.2 System Architecture ... 19
4.2.1 Entity Relationship Diagram... 19
4.2.2 Graphical User Interface ... 20

4.3 Challenges and Solutions .. 27

5. Conclusion... 28

5.1 Impact on the Cybersecurity Landscape .. 28

5.2 Economic Dimension .. 28

5.3 Further Activities ... 28

6. Summary .. 29

Table of Figures

1. Introduction

1.1 Background

In the evolving landscape of cybersecurity, the protection of unmanned vehicle systems

has emerged as a critical area of focus. These systems, characterized by their modular

design and reliance on a myriad of interconnected components, present unique security

challenges. The advent of sophisticated cyber threats necessitates the development of

advanced Threat Detection and Response Systems (TDRS) tailored to address the

nuanced vulnerabilities of these platforms.

1.2 Problem Statement

Modular unmanned vehicle systems, integral to various mission-critical operations, are

increasingly targeted by adversaries seeking to exploit network and system

vulnerabilities. Traditional security measures often fall short in providing the dynamic,

context-aware defences required to protect these complex systems. There is a pressing

need for a TDRS that can adapt to the unique operational and security requirements of

unmanned vehicles, ensuring the integrity and availability of their mission-critical

functions.

1.3 Research Focus

This thesis proposes the development of a TDRS designed specifically for modular

unmanned vehicle systems. The proposed system aims to:

• Detect anomalous network activities, identifying unauthorized communications

between modules, which may signify potential security breaches or intrusion

attempts.

• Implement log-based pattern matching, leveraging logs from various sources

within the vehicle, including modules and the Electronic Control Unit (ECU), to

detect signs of malicious activity.

• Generate and execute response recommendations, based on predefined rules

and the specific context of detected threats, with capabilities for both automatic

and manual interventions. This dual approach ensures that while the system can

autonomously mitigate certain threats, the operator retains ultimate control over

critical response decisions.

1.4 Significance

The development of a dedicated TDRS for modular unmanned vehicle systems addresses

a significant gap in the cybersecurity domain. By providing a tailored solution that

encompasses both detection and response capabilities, the system enhances the security

posture of unmanned vehicles, protecting them against increasingly sophisticated cyber

threats. This research not only contributes to the technical body of knowledge in

cybersecurity but also has practical implications for the design and operation of secure

unmanned vehicle systems.

2. Analysis

2.1 Market Research

1. Overview

This chapter initiates the exploration into the development of a Threat Detection and

Response System (TDRS) tailored for modular unmanned vehicle systems, emphasizing

a preference for open-source solutions. The objective is to identify existing cybersecurity

tools that could serve as components of the TDRS, focusing on capabilities such as

network traffic inspection, log collection and parsing, and custom rule management, all

while ensuring the possibility for manual operator intervention and automated response

actions.

2.1.1 Methodology

The market research employed a dual-focused strategy: First, it sought to uncover

commercial off-the-shelf (COTS) solutions that address general cybersecurity needs.

Secondly, and more critically, it delved into open-source tools and libraries, given their

potential for customization, community-driven improvements, and cost-effectiveness.

The evaluation criteria were designed to highlight features crucial for unmanned systems,

including:

• Network traffic inspection capabilities, especially on mirrored network ports.

• Advanced log collection and parsing for both standard and bespoke log sources.

• The flexibility of defining and managing custom detection and response rules.

• Provision for human operator intervention in the decision-making process.

• The ability for the system to automatically execute response actions.

2.1.2 Findings

Our investigation into the cybersecurity landscape revealed a rich ecosystem of both

COTS and open-source solutions, with a notable emphasis on the latter due to their

alignment with the project's core principles. While COTS products offer robust

functionalities in network monitoring and log management, they often fall short in terms

of adaptability and integration potential for unmanned vehicle systems. Conversely, open-

source tools demonstrated considerable promise, owing to their flexibility and the vibrant

communities behind them. However, challenges were identified in finding singular or

integrated open-source solutions that fully satisfy all specified requirements without

extensive customization.

Key observations include:

• Partial Coverage by Open-Source Tools: Open-source tools like Snort or

Suricata (for IDS) and Elasticsearch or Graylog (for log management) are highly

capable in their respective areas but require significant integration effort to work

as a cohesive system tailored for unmanned vehicles.

• Customization and Integration Needs: Despite the inherent adaptability of

open-source solutions, bridging the gap between these discrete tools to form a

comprehensive TDRS demands considerable custom development, especially for

nuanced unmanned system applications.

• Operator Intervention: Few open-source tools natively support workflows that

allow for manual intervention by operators in a seamless manner, highlighting an

area for targeted development within the TDRS.

2.1.3 Implications

The preference for open-source solutions is validated by their potential for customization

and the advantages of community support. However, the research also underscores the

absence of a turnkey open-source solution that meets all project criteria. This gap

reinforces the project's direction towards integrating and customizing existing open-

source tools, aligning with the ethos of supporting open-source software and avoiding the

reinvention of proven components.

2.1.4 Conclusion

The market research establishes a solid foundation for the development of a TDRS,

confirming the strategic decision to leverage open-source solutions. Despite the

availability of numerous tools, the specific needs of unmanned vehicle systems—

particularly in terms of system integration, customization, and operator control—

necessitate a bespoke approach. This sets the stage for a project that not only contributes

to the field of cybersecurity within unmanned systems but also embodies the principles

of open-source development.

2.2 Detailed Problem Statement

2.2.1 Introduction

The necessity for an advanced TDRS within modular unmanned vehicle systems is driven

by the unique operational environments and threat landscapes these systems navigate.

While the "Market Research" has illuminated the landscape of available cybersecurity

solutions, with a particular focus on open-source tools, it also highlighted significant gaps

between existing capabilities and the specific needs of unmanned systems. This "Detailed

Problem Statement" aims to articulate these gaps and challenges in detail, setting the stage

for a targeted research and development effort.

2.2.2 The Unique Context of Unmanned Vehicle Systems

Unmanned vehicle systems, characterized by their modular design and reliance on

interconnected digital and physical components, present a unique set of security

challenges. These systems operate in dynamic environments where the threat of cyber-

attacks can have real-world, physical consequences. The complexity of these systems,

coupled with the necessity for real-time response capabilities, underscores the need for a

TDRS that is both highly adaptable and capable of autonomous operation while allowing

for human oversight.

2.2.3 Challenges Identified

1. Integration of Disparate Open-Source Tools: The cybersecurity domain offers a

plethora of open-source tools, each excelling in specific aspects of threat detection

and response. However, the integration of these tools into a cohesive system that

addresses the full spectrum of security needs for unmanned vehicle systems remains

a significant challenge. This includes ensuring compatibility, maintaining real-time

data processing capabilities, and providing a unified interface for system

management.

2. Customization for Specific Threat Scenarios: Unmanned vehicle systems are

subject to a wide range of potential cyber threats, from targeted attacks aiming to

disrupt operational integrity to sophisticated attempts to take control of system

modules. Developing detection and response mechanisms that can be customized for

the specific threat scenarios these systems face, leveraging open-source tools, requires

extensive knowledge of both the operational context and the underlying technologies.

3. Operator Intervention and Automated Responses: Balancing automated threat

responses with the need for human operator intervention presents a complex

challenge. The system must be capable of making real-time decisions in critical

situations while also providing mechanisms for operators to override or modify these

actions when necessary. Achieving this balance within an open-source framework

necessitates a deep integration of software components with operational protocols.

4. Resource Constraints and System Performance: Unmanned vehicle systems often

operate under significant resource constraints, including limitations on computing

power, memory, and network bandwidth. Developing a TDRS that is efficient enough

to run within these constraints, while still providing comprehensive monitoring and

response capabilities, is a critical requirement. The use of open-source solutions must

therefore be optimized for performance and resource utilization.

2.2.4 Implications for Development

The detailed exploration of these challenges illustrates the gap between the current state

of open-source cybersecurity solutions and the requirements of a TDRS for unmanned

vehicle systems. Addressing these challenges requires not just the selection of appropriate

tools, but a concerted effort to develop new integrations, customizations, and operational

protocols that leverage the strengths of open-source software.

2.2.5 Conclusion

The detailed problem statement underscores the necessity for a project that goes beyond

conventional cybersecurity solutions, aiming instead to harness the potential of open-

source software to meet the unique demands of modular unmanned vehicle systems. This

sets the groundwork for the subsequent phases of this thesis, which will focus on the

design, development, and validation of a TDRS that can address these identified

challenges, contributing to the safety, reliability, and operational effectiveness of

unmanned vehicle systems.

2.3 Comparison of Solutions

2.3.1 Introduction

This section evaluates a selection of open-source tools across essential domains for the

development of a Threat Detection and Response System (TDRS) tailored to modular

unmanned vehicle systems. Emphasizing the tools' compatibility with Docker containers

and their ability to handle JSON input/output, we explore network inspection tools, log

collection and parsing tools, lightweight log-based pattern matching and event correlation

tools, and automated response software with operator intervention capabilities.

2.3.2 Network Inspection Tools

Tool Strengths Weaknesses Applicability

Suricata

High performance,

advanced threat detection,

JSON output natively

supported

Configuration

complexity,

resource-intensive

High; Docker-compatible, offers

detailed JSON-formatted output for

deep analysis and integration

Zeek

Rich network analysis,

flexible scripting,

supports JSON logs

Learning curve,

setup complexity

High; Runs efficiently in Docker,

outputs comprehensive JSON logs,

facilitating easy integration with

other components

Snort3

Next-gen capabilities,

improved performance,

JSON output support

Transition from

Snort2 may require

adjustments

High; Docker support is robust,

JSON output for alerts and logs

aligns with modern data processing

pipelines

2.3.3 Log Collection and Parsing Tools

Tool Strengths Weaknesses Applicability

Fluentd

Lightweight, extensive

plugin ecosystem, native

JSON support

Configuration

learning curve

High; Highly Docker-friendly,

excels in JSON log collection and

parsing, facilitating versatile log

management strategies

Filebeat

Part of the Elastic Stack,

lightweight, JSON

input/output

Primarily tailored

for Elasticsearch

integration

High; Docker-compatible,

efficiently handles JSON logs,

ideal for forwarding structured

data

Logstash

Powerful processing

capabilities, flexible plugin

architecture, JSON parsing

and output

Resource-intensive

compared to others

High; Well-supported within

Docker environments, offers

robust JSON processing features

for complex log data

Lightweight Log-based Pattern Matching and Event Correlation Tools

Tool Strengths Weaknesses Applicability

SEC (Simple

Event

Correlator)

Efficient at real-time

event correlation, light on

resources, flexible in

handling different log

formats

May require

complex

configuration for

advanced correlation

scenarios

High; ideal for Docker

environments, handles text

and regex patterns effectively,

and supports JSON for event

data

Sagan

Real-time log analysis,

integrates with

Snort/Suricata rule sets,

JSON output

Less known, smaller

community

Moderate; suitable for Docker

deployment, can correlate

events and output in JSON,

complementing network

inspection tools

Moloch

Full packet capture,

indexing, and database-

driven search, JSON

APIs

High resource usage

for full packet

capture

Moderate; provides

comprehensive network

visibility and event

correlation, Docker-

compatible, with JSON output

for integration

2.3.4 Automated Response Software with Operator Intervention

Tool Strengths Weaknesses Applicability

StackStorm

Event-driven automation,

extensive integration

options, JSON-based

workflows

Complexity in setup

and management

High; Docker-ready, supports

JSON for defining workflows,

making it adaptable for

automated responses with the

option for manual oversight

TheHive

Open-source incident

response, integrates with

multiple tools, JSON API

for communication

Setup complexity,

requires integration

for full functionality

High; Docker-compatible,

offers a JSON-based API for

seamless integration with

detection and analysis tools

Tool Strengths Weaknesses Applicability

Falco

Behavioral monitoring,

JSON output for alerts,

Kubernetes and Docker

integration

Focuses on container

security, may require

customization for

broader use

High; Ideal for Docker

environments, outputs JSON

alerts that can be integrated

into automated response

systems

2.3.5 Conclusion

The selection of tools demonstrates a strong alignment with the project's requirements for

Docker compatibility and JSON support, ensuring seamless integration within a

containerized architecture and facilitating API-based communication among components.

This tailored suite of tools provides a robust foundation for developing a comprehensive

and efficient TDRS, capable of sophisticated threat detection, analysis, and response in

modular unmanned vehicle systems. The next steps involve detailing the integration

strategies for these tools to construct a cohesive system that leverages Docker and JSON

for enhanced interoperability and scalability.

2.4 Methods and Tools Selection

2.4.1 Introduction

Selecting the appropriate methods and tools for a Threat Detection and Response System

(TDRS) is critical to the success of the project. In this sub-chapter, we rationalize the

choices for the TDRS, focusing on tools that excel in Docker environments and support

JSON for message exchange.

2.4.2 Rationale for JSON Usage

Interoperability: JSON is universally supported across programming languages and

platforms, making it an excellent format for API communication within distributed

systems like a TDRS.

Human Readability and Machine Parsability: JSON's format is both human-readable

and easily parsed by machines, which is invaluable for development, debugging, and

maintaining clear communication protocols between system components.

Lightweight: JSON is less verbose than XML, reducing the amount of data transmitted

over the network, which can improve the efficiency of the system, particularly when

dealing with the high-volume data characteristic of threat detection systems.

Comparison with XML and Other Formats: XML, while as interoperable as JSON,

tends to be more verbose and requires more processing power to parse. Other binary

formats like Protocol Buffers offer performance benefits but lack the text-based, human-

readable advantage of JSON.

2.4.3 Rationale for Docker Containerization

Isolation: Docker ensures that each tool or service runs in an isolated environment,

preventing version conflicts and ensuring consistency across different development,

testing, and production environments.

Scalability: Docker containers can be easily scaled up or down, making them ideal for

systems that need to adapt to varying loads, such as a TDRS that might experience

fluctuating levels of network traffic and log data.

Portability: Docker containers package the application and its dependencies together,

allowing for easy portability across different systems and cloud environments.

Development Efficiency: Docker simplifies the setup of development environments,

allowing developers to focus on building the TDRS without worrying about

inconsistencies between different workstations or deployment targets.

Comparison with Virtual Machines (VMs) and Bare Metal: VMs provide full isolation

at the cost of higher overhead, while bare-metal deployments offer performance benefits

but lack the isolation, portability, and quick setup and tear-down capabilities of Docker

containers.

2.4.4 Selected Tools and Technologies

Based on the above considerations, the following tools have been selected for the TDRS:

• Network Inspection: Suricata has been chosen for its Docker compatibility and

native JSON output, providing detailed threat analysis that integrates seamlessly

with other system components.

• Log Collection and Parsing: Fluentd stands out for its lightweight nature,

Docker-readiness, and JSON support, offering the flexibility required for the

TDRS's log management needs.

• Event Correlation: SEC (Simple Event Correlator) is selected for its efficiency

in real-time event correlation, ability to handle text and regex patterns, and its

support for JSON outputs, aligning with the TDRS's data format preferences.

• Automated Response: StackStorm is chosen for its capability to automate

complex workflows, Docker compatibility, and JSON-based configuration, which

facilitates the creation of responsive and adaptable automated actions with the

option for manual intervention.

2.4.5 Conclusion

The selection of methods and tools for the TDRS is driven by the need for efficient data

processing, system interoperability, and operational flexibility. The preference for JSON

and Docker stems from their widespread support, performance benefits, and alignment

with the project's goals of creating a scalable, robust, and maintainable system. These

technologies provide a foundation for a TDRS that is well-suited to the dynamic and

demanding environment of modular unmanned vehicle systems.

3. Synthesis

…

4. Implementation

…

4.1 Developing the Solution

…

4.2 System Architecture

…

4.2.1 Entity Relationship Diagram

Figure 1. Entity relationship diagram representation

4.2.2 Graphical User Interface

The following figures represent the main client-side “happy flow” of the TDRS within its

web interface.

Figure 2. Login view

Figure 3. Vehicle overview

Figure 4. Platform configuration view

Figure 5. Configuration Import view

Figure 6. Detection Module Configuration view

Figure 7. Event Correlation Rule Creation view

Figure 8. Intrusion Detection Signature Creation view

Figure 9. Response Classification Configuration view

Figure 10. Response Classification Recommendation modal view

Figure 11. Event Monitoring view

Figure 12. Asset Management view

Figure 13. Asset Management modal view

Figure 14. Asset Management Enumeration modal view – discovered ports

Figure 15. Asset Management Enumeration modal view - vulnerabilities

4.3 Challenges and Solutions

…

5. Conclusion

…

5.1 Impact on the Cybersecurity Landscape

…

5.2 Economic Dimension

…

5.3 Further Activities

…

6. Summary

…

	Author’s declaration of originality
	Table of Figures
	1. Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Research Focus
	1.4 Significance

	2. Analysis
	2.1 Market Research

	1. Overview
	2.1.1 Methodology
	2.1.2 Findings
	2.1.3 Implications
	2.1.4 Conclusion
	2.2 Detailed Problem Statement
	2.2.1 Introduction
	2.2.2 The Unique Context of Unmanned Vehicle Systems
	2.2.3 Challenges Identified
	2.2.4 Implications for Development
	2.2.5 Conclusion

	2.3 Comparison of Solutions
	2.3.1 Introduction
	2.3.2 Network Inspection Tools
	2.3.3 Log Collection and Parsing Tools
	2.3.4 Automated Response Software with Operator Intervention
	2.3.5 Conclusion

	2.4 Methods and Tools Selection
	2.4.1 Introduction
	2.4.2 Rationale for JSON Usage
	2.4.3 Rationale for Docker Containerization
	2.4.4 Selected Tools and Technologies
	2.4.5 Conclusion

	3. Synthesis
	4. Implementation
	4.1 Developing the Solution
	4.2 System Architecture
	4.2.1 Entity Relationship Diagram
	4.2.2 Graphical User Interface

	4.3 Challenges and Solutions

	5. Conclusion
	5.1 Impact on the Cybersecurity Landscape
	5.2 Economic Dimension
	5.3 Further Activities

	6. Summary

