
 
 
 
 
 
 
 
 
 
 
 

SPARROW CI 
 

Scope of work in Distributed Systems project 
 
 
 

Student:  Gert Vesterberg 
Student Code:  175871IDDR 
Supervisor:  Andres Käver 
 

 
 
 
 

 
 
 
 

 
 

 
Tartu 2020 

 



Table of contents 
Table of contents 1 

Introduction 1 

Scope of work 2 
Main services 3 

Frontend 3 
Server 3 

Middleware 4 
MySQL Database 4 
Kubernetes 4 
Message Broker 4 
File storage 4 

Diagrams 5 

References 7 
 

 

1 



Introduction 
 
There are many CI tools available, but most of them operate as SaaS models. Therefore it is quite 
expensive for a single developer or student to afford such a subscription. Although some services 
allow us to use a limited amount of free build-minutes, in some cases it might be not sufficient.  
 
There are also downloadable CI tools available, which can be run locally. The most popular tool 
is Jenkins [1]. Jenkins was initially intended for building Java applications. To build some other 
projects, relevant plugins need to be installed. In addition to outdated UI and UX, Jenkins is 
quite difficult to set up properly and lacks essential features for building modern cloud-based 
applications. 
 
The goal of this project is to create a lightweight open-source, cloud native distributed 
continuous integration (CI) tool, which can be easily run in locally or in Kubernetes cluster. 
 
Domain-specific language (DSL) for describing pipelines will be simple YAML [2], which is 
part of project’s GIT repository. 

Scope of work 
Project scope is divided into multiple milestones: 
 
Must have 

1. Design and define database entities 
2. Define controllers needed managing database entities 
3. User authentication and authorization 
4. Executing shell-commands and capturing results from Application (Proof-of-concept) 
5. Github integration for repositories discovery 
6. Incoming WebHooks from Github 
7. Commit, Branch and Pull Request discovery 
8. DSL parser (Proof-of-concept) 
9. Initiating a build on WebHook notification, storing the results and artifacts locally 

 
Nice to have 

1. DSL visualization in UI 
2. Storing artifacts to S3 [3] bucket 
3. Multi-node build executors on Kubernetes [4] cluster 

 

2 



 
 
 
 
The scope of minimum viable product (MVP) is to develop following microservices: 
 

Main services 

Frontend 
Frontend single-page web application will be built using Angular [5] framework and ngx-admin 
UI visual framework.  
 
Frontend application uses standard JSON Web Token (JWT)  [6]  flow for authentication and 
token-refreshing. Transpiled static files of frontend application will be served by NGINX [7] 
web-server. 

Server 
Server processes HTTP request, publishes the build tasks to message queue and listens to the 
task results from queue. 
 
Server project has following services: 
 

● UserService​ - user management and authentication 
● BuildOrcestratorService​ - publishes build messages to queue; listens for results 
● BuilderService​ - listens the build messages, executes build, sends the response 
● BuildExecutorService​ - executes the build via running shell command 
● DSLService​ - validates and parses YAML DSL build pipelines 
● IntegrationService​ - integrates with repositories on Github 
● IncomingWebHookService​ - manages incoming webhooks 

 
 
 

 
  

3 



Middleware 

MySQL Database 
MySQL Database is used in Server components to store the user authentication data, projects and 
their integrations and build results. MySQL was chosen because of its performance and the 
author's previous experience with such RDBMS.  
 
For the project demo, the system used DigitalOcean’s managed database cluster. 

Kubernetes 
Frontend and Server components will be deployed to the Kubernetes cluster. For the demo 
project, System runs in 3-node DigitalOcean managed Kubernetes cluster. NGINX ingress will 
be configured as internal load balancer. 

Message Broker 
In order to BuildExecutorService to know when is the right time to execute the build, a message 
broker will be used. The exact message broker will be chosen during the implementation phase, 
the potential candidates are RabbitMQ, Apache Kafka, ActiveMQ [7]. 

File storage 
Build artifacts (build logs and artifacts) cannot be stored in the Kubernetes cluster due to it’s 
distributed nature. Therefore separate file storage layers will be used. Exact service will be 
chosen during the implementation. Potential candidates are: Amazon S3 and DigitalOcean 
Spaces.  

4 



Diagrams 
 

 
Diagram 1: ​System Architecture 

 
 
 

5 



 
Diagram 2: ​ERD​ ​(subject to change during the project) 

 
Diagram 2: ​Sequence Diagram - main flow​ ​(subject to change during the project) 

6 



References 
[1] ​Jenkins CI ​- ​https://jenkins.io/ 
[2] ​YAML​ - ​https://yaml.org/  
[2] ​Amazon S3​ - ​https://aws.amazon.com/s3/​  ; ​DigitalOcean S3 analogue​ - 
https://www.digitalocean.com/products/spaces/  
[3] ​DigitalOcean Managed Kubernetes​ - ​https://www.digitalocean.com/products/kubernetes/  
[4] ​NGINX​ - ​https://www.nginx.com/ 
[5] ​Angular ​- ​https://angular.io/​ ; ​ngx-admin​: ​https://github.com/akveo/ngx-admin  
[6] ​JSON Web Token​ - ​https://jwt.io  
[7] ​Message Brokers​: Apache Kafka - ​https://kafka.apache.org/​ ; RabbitMQ - 
https://www.rabbitmq.com/​ ; ActiveMQ - ​https://activemq.apache.org/  
  
 
 
 
 
 

7 

https://jenkins.io/
https://yaml.org/
https://aws.amazon.com/s3/
https://www.digitalocean.com/products/spaces/
https://www.digitalocean.com/products/kubernetes/
https://www.nginx.com/
https://angular.io/
https://github.com/akveo/ngx-admin
https://jwt.io/
https://kafka.apache.org/
https://www.rabbitmq.com/
https://activemq.apache.org/

