
TALLINN UNIVERSITY OF TECHNOLOGY

School of Information Technologies

Kersti Miller 175726IDDR

PORTFOLIO MANAGER

Scope of work in Distributed Systems project

Supervisor: Andres Käver

Tallinn 2020

Author’s declaration of originality

I hereby certify that I am the sole author of this report. All the used materials, references
to the literature and the work of others have been referred to. This thesis has not been
presented for examination anywhere else.

Author: Kersti Miller

06.03.2020

2

Abstract

This project proposal is written in english and is 32 pages long, including 5 chapters,
17 figures and 6 tables.

3

List of abbreviations and terms

PK Primary key

FK Foreign key

1:0-1 One-to-Zero or One-to-One relationship

1:M One-to-Many relationship

4

Table of Contents

 Author’s declaration of originality...2

 Abstract...3

 List of abbreviations and terms..4

 List of tables...7

1 Introduction..8

2 Project Scopes...9

2.1 Scope SMALL...9

2.2 Scope MEDIUM..12

2.3 Scope LARGE..14

3 ERD schema...17

4 Soft delete and soft update..18

4.1 Test tables...18

4.1.1 1..18

4.1.2 1:M relationship..18

4.1.3 1:1-0 relationship..19

4.2 Insert-Only Database..19

4.2.1 Test case: 1 table...19

4.2.2 Test case: 1:M relationship...20

4.2.3 Test case: 1: 0-1 relationship..23

4.2.4 Pros and cons..24

4.3 History tables...25

4.3.1 Test case: 1 table...25

4.3.2 Test case: 1:M relationship...26

4.3.3 Test case: 1:0-1 relationship...28

4.3.4 Pros and cons..29

4.4 Conclusions..30

5 Summary...31

 References..32

5

List of Figures

 Figure 1: Scope SMALL: initial dashboard view...9

 Figure 2: Scope SMALL: changing the data..10

 Figure 3: Scope SMALL: adding new asset with new type and platform......................10

 Figure 4: Scope SMALL: adding new platform...11

 Figure 5: Scope SMALL: filled fields for adding a new asset.......................................11

 Figure 6: Scope SMALL: new platform is displayed in the dashboard table.................12

 Figure 7: Scope MEDIUM initial dashboard view...13

 Figure 8: Scope MEDIUM: changing the balance and adding the details.....................13

 Figure 9: Scope LARGE: dashboard view with data changing......................................14

 Figure 10: Scope LARGE: adding shared asset to existing asset...................................15

 Figure 11: Scope LARGE: viewing specific assets distributions and parts...................15

 Figure 12: Scope LARGE: initial statistics list..16

 Figure 13: Scope LARGE: initial groups page...16

 Figure 14: ERD schema..17

 Figure 15: Location..18

 Figure 16: Location-Asset 1:M relationship...18

 Figure 17: Person-Photo 1:1-0 relationship..19

6

List of tables

Table 1: Selected results and queries from 1 table soft delete and soft update...............20

Table 2: Selected results and queries from 1:M tables soft delete and soft update.........22

Table 3: Selected results and queries from 1:0-1 tables soft delete and soft update.......24

Table 4: Selected results and queries from 1 table soft delete and soft update...............26

Table 5: Selected results and queries from 1:M tables soft delete and soft update.........28

Table 6: Selected results and queries from 1:0-1 tables soft delete and soft update.......29

7

1 Introduction

The goal of this project is to create a portfolio manager for assets. The need for a proper

assets manager came from authors personal need to track and follow her family

portfolio. Author has tried several portfolio managers, but they have not filled all the

needs and wishes upon the service provided. This project is aiming to move towards

easier management from sophisticated excel sheets to the proper application.

The author has created three scopes for the project: small, medium and large. The

scopes will be described in more detail in chapter 2. They represent the progress of the

project and if all goes well enough there might be scope named extra-large. The scopes

are subject to change during the process.

The small scope of this project is to create a solution where person can track it’s current

state of the asset values. User can see the total balance of all the assets according to the

date the data was inserted. All the data will be inserted manually. That scope is rather

small and it’s created for to be the starting point for development.

The medium scope will have possibility to differentiate different parts of one asset. For

example when user is buying stocks from company X three times a year, then each

transaction will be visible.

Larger scope of this project is to have possibility to create groups since assets can be

shared between family members and friends. Hopefully the author can reach to that

scope.

In an ideal world the data should be fetched from the API-s of the service providers

(different platforms where users can invest and trade). In reality there aren’t many API-s

available.

8

2 Project Scopes

2.1 Scope SMALL

The small scope of this project is to create a solution where person can track it’s current

state of the asset values. User can see the total balance of all the assets according to the

date the data was inserted. All the data will be inserted manually. User can insert Goals

and Tasks, but they are not tied with any certain asset. The table is showing the sum of

all the assets and user can not distinguish sub assets. For example user has 15 000 EUR

in Funderbeam in different projects, but they are not identifiable in small scope. The

small scope does not have enough complexity to fulfill the project needs.

9

Figure 1: Scope SMALL: initial dashboard view

10

Figure 2: Scope SMALL: changing the data

Figure 3: Scope SMALL: adding new asset with new type and platform

11

Figure 4: Scope SMALL: adding new platform

Figure 5: Scope SMALL: filled fields for adding a new asset

2.2 Scope MEDIUM

The medium scope will be the minimum for that project. It will have the possibility to

display different stats on the assets table. For example it could show how portfolio is

distributed. How large is every asset share in the portfolio and what is the state

compared to previous data insertion: has the position decreased, gained value or if the

value is the same.

Medium scope will have transactions associated with assets and then user can insert if

he had an income or outgoing, was the received money interests, dividends or did the

user pays some service fees.

The tasks can be associated with assets or transactions. The goals can be related with

assets class, location or location type. Goals card will display calculated numbers and

recommendations for how to reach your goal and how much time do you have until due

date.

There will be statistics page with more complex data.

12

Figure 6: Scope SMALL: new platform is displayed in the dashboard table

13

Figure 7: Scope MEDIUM initial dashboard view

Figure 8: Scope MEDIUM: changing the balance and adding the details

2.3 Scope LARGE

The large scope of this project is to have possibility to create groups since assets can be

shared between family members and friends. User can be a private person and it could

also have a company where it can make it’s investments.

User can make an entry about new assets and the program should calculate missing data

by itself. For example if user inserts an entry where user has bought shares worth of

1500 euros and inserts the amount of shares, the price of one share will be calculated

and vice versa about the other components.

14

Figure 9: Scope LARGE: dashboard view with data changing

15

Figure 10: Scope LARGE: adding shared asset to existing asset.

Figure 11: Scope LARGE: viewing specific assets distributions and parts

16

Figure 12: Scope LARGE: initial statistics list

Figure 13: Scope LARGE: initial groups page

3 ERD schema

17

Figure 14: ERD schema

4 Soft delete and soft update

One of the main tasks for the project was to decide how to proceed with the revisionable

database. This means the implementation of the techniques that are called among other

names as soft delete and soft update. In authors project there will be discussion about

two approaches.

1. Insert-Only Database

2. History tables

4.1 Test tables

For testing out previously mentioned approaches in database design, author has created

three table sets.

4.1.1 1

4.1.2 1:M relationship

18

Figure 16: Location-Asset 1:M relationship

Figure 15: Location

4.1.3 1:1-0 relationship

4.2 Insert-Only Database

First approach for database design is the idea that you never update or delete data, only

the validity column. Each table has two “timestamp” or “datetime” columns that to-

gether describe validity period: “valid-from” and “valid-to”. They start with the

predefined value for the beginning of time and the end of time. When user needs to

„update” the row in any way, it updates the previous data “valid-to” value to correct

date and then adds a new row with updated data which has now “valid-from” the same

date as the previous data row “valid-to”. It is recommended to have a unique index or

composite key out of the foreign key(s) and the “to” value since then user can’t insert

new row before updating the previous row “valid-to” value. With query you should look

for data that has “valid-to” predefined end of time value.1

4.2.1 Test case: 1 table

With only one table author does not need composite keys and data insertion is easier.

PK is auto-incremented.

Test table:

CREATE TABLE LocationOnly (
 LocationOID INT IDENTITY PRIMARY KEY,
 Name VARCHAR(64) NOT NULL,
 ValidFrom DATE NOT NULL,
 ValidTo DATE NOT NULL,
)

1 “Ideas on database design for capturing audit trails”. – StackOverflow, 26. VI 2009,
https://stackoverflow.com/questions/1051449/ideas-on-database-design-for-capturing-audit-trails,
used 06. III 2020.

19

Figure 17: Person-Photo 1:1-0 relationship

https://stackoverflow.com/questions/1051449/ideas-on-database-design-for-capturing-audit-trails
https://stackoverflow.com/questions/1051449/ideas-on-database-design-for-capturing-audit-trails

Steps to perform soft update:

1. INSERT new row with old name and add “ValidFrom” and “ValidTo” dates

2. UPDATE the original row name

In order to soft delete there is one step extra:

1. INSERT new row with old name and add “ValidFrom” and “ValidTo” dates

2. UPDATE the original row name next ValidTo date

-- CURRENT TIME
DECLARE @CurrentTime DATETIME2
SELECT @CurrentTime = '2020-05-01'

-- SELECT ALL

SELECT * FROM LocationOnly

-- SELECT VALID

SELECT * FROM LocationOnly

 WHERE LocationOnly.ValidTo > @CurrentTime

-- SELECT INVALID

SELECT * FROM LocationOnly

 WHERE LocationOnly.ValidTo < @CurrentTime

Table 1: Selected results and queries from 1 table soft delete and soft update

4.2.2 Test case: 1:M relationship

Author has two tables which will have different data loads: Location and Asset. In a

portfolio manager the more used table among mentioned two is Asset. It will have all

the assets related to one location. Less used is Location. In one location user can have

many assets. Table where data changes or additions will happen rather rarely does not

need complicated system for tracking changes which in our case is Location. One must

be more careful with finding suitable database design for Assets.

20

Test tables:

CREATE TABLE Location (
 LocationID INT NOT NULL,
 Name VARCHAR (64) NOT NULL,
 ValidFrom DATE NOT NULL,
 ValidTo DATE NOT NULL,
 CONSTRAINT PK_Location PRIMARY KEY (LocationID, ValidTo)
)

CREATE TABLE Asset (
 AssetId INT NOT NULL,
 Value INT NOT NULL,
 ValidFrom DATE NOT NULL,
 ValidTo DATE NOT NULL,
 LocationID INT,
 LocationValidTo DATE,
 CONSTRAINT PK_Asset PRIMARY KEY (AssetID, ValidTo),
 CONSTRAINT FK_Asset_Location FOREIGN KEY (LocationID, LocationValidTo) REFERENCES Loca-
tion(LocationID, ValidTo)
)

Author has declared composite PK-s and FK-s from „ID” and „ValidTo” columns. With

that approach one has to in case of soft update Location Name:

3. INSERT new row with old name and add “ValidFrom” and “ValidTo” dates.

4. UPDATE the original row name

Then there will be no conflicts between composite PK and FK in the Assets table. This

has to be done like this in order to ensure that there is a match and only one match for

Asset in Locations table.

In order to soft delete there is one step extra:

1. INSERT copy with ValidTo date

2. UPDATE Assets table records with new LocationValidTo

3. UPDATE Locations copy with another ValidTo date

21

Fraction of inserted data and some query result:

-- CURRENT TIME
DECLARE @CurrentTime DATETIME2
SELECT @CurrentTime = '2020-05-01'

-- SELECT ALL

SELECT

 Asset.Value,

 Location.Name,

 Location.ValidFrom,

 Location.ValidTo

FROM Asset

JOIN Location

ON Asset.LocationID = Location.LocationID

-- SELECT VALID AND SUMMED

SELECT

 SUM(Asset.Value) AS 'Asset Value',

 Location.Name,

 Location.ValidTo

FROM Asset

INNER JOIN Location

ON Asset.LocationID = Location.LocationID

AND Asset.LocationValidTo = Location.ValidTo

WHERE Location.ValidTo > @CurrentTime
GROUP BY Location.Name, Location.ValidTo

-- SELECT INVALID

SELECT

 Asset.Value,

 Location.Name,

 Location.ValidFrom,

 Location.ValidTo

FROM Asset

JOIN Location

ON Asset.LocationID = Location.LocationID

WHERE Location.ValidTo < @CurrentTime

Table 2: Selected results and queries from 1:M tables soft delete and soft update

22

4.2.3 Test case: 1: 0-1 relationship

Author created fictive test case from Person-Photo relationship. One person can have

none or one photos. Every photo has a person.

Test tables:

CREATE TABLE Person (
 PersonID INT NOT NULL,
 Name VARCHAR(64) NOT NULL,
 ValidFrom DATE NOT NULL,
 ValidTo DATE NOT NULL,
 CONSTRAINT PK_Person PRIMARY KEY (PersonID, ValidTo)
)

 CREATE TABLE Photo (
 PhotoId INT NOT NULL,
 Name VARCHAR(64) NOT NULL,
 ValidFrom DATE NOT NULL,
 ValidTo DATE NOT NULL,
 PersonID INT,
 PersonValidTo DATE,
 CONSTRAINT PK_Photo PRIMARY KEY (PhotoId, ValidTo),
 CONSTRAINT FK_Photo_Person UNIQUE (PersonID, PersonValidTo)
)

The steps to perform soft delete and soft update are the same as in 1:M relationship.

Soft update:

1. INSERT new row with old name and add “ValidFrom” and “ValidTo” dates.

2. UPDATE the original row name

Soft delete:

1. INSERT copy with ValidTo date

2. UPDATE Photo table records with new PersonValidTo

3. UPDATE Person copy with another ValidTo date

23

Inserted data and some query result:

-- CURRENT TIME

DECLARE @CurrentTime DATETIME2

SELECT @CurrentTime = '2020-05-01'

-- SELECT ALL

SELECT

 Person.Name,

 Photo.Name,

 Person.ValidFrom,

 Person.ValidTo

FROM Person

LEFT JOIN Photo

ON Photo.PersonID = Person.PersonID

ORDER BY Photo.ValidTo DESC

-- SELECT VALID
SELECT
 Photo.Name,
 Person.Name,
 Person.ValidFrom,
 Person.ValidTo

FROM Photo

JOIN Person

 ON Photo.PersonID = Person.PersonID

AND Photo.PersonValidTo = Person.ValidTo

WHERE Person.ValidTo > @CurrentTime

-- SELECT INVALID
SELECT
 Photo.Name,
 Person.Name,
 Person.ValidFrom,
 Person.ValidTo

FROM Photo

JOIN Person

 ON Photo.PersonID = Person.PersonID

 WHERE Person.ValidTo < @CurrentTime

Table 3: Selected results and queries from 1:0-1 tables soft delete and soft update

4.2.4 Pros and cons

Pros:

• No separate tables

• Only one row of some certain data is valid at the time and is visible via “valid-
to” columns

• Does not have extra columns to track changes

Cons:

• A lot of data in one table

• Juggling between records for deleting

24

4.3 History tables

A history table is created for the purpose of using one table to track changes in another

table. The idea is very simple, but when the concept is implemented in an inexperienced

way it will lead to a data bloat and it would be difficult to make queries. That means

that all the columns are being copied into the history table and they will include

redundant repetitions which are hard to inspect and query. Another approach is to add

into the history table only the columns that you know what you will definitely need.

This raises an issue whether we really know for certainty what columns are needed also

in the future.1

Kenneth Downs has pointed out in his blog that the best performing and most secure

method is to implement history tables with triggers on the source table as it is the best

way to implement both security and the actual business rules in one encapsulated object

(the table).2 Author of this project does not have any knowledge about triggers and

designing the database in the code hence the author can’t make any decisions upon

previous experience.

4.3.1 Test case: 1 table

With only one table author does not need composite keys and data insertion is easier.

PK is auto-incremented.

Test tables:

CREATE TABLE LocationOnlyClean (

 LocationCID INT IDENTITY PRIMARY KEY,
 Name VARCHAR(64) NOT NULL,
)
CREATE TABLE LocationOnlyHistory (
 LocationHID INT IDENTITY PRIMARY KEY,
 LocationCID INT NOT NULL,
 Name_old VARCHAR(64) NOT NULL,
 Name_new VARCHAR(64) NOT NULL,
 Activity VARCHAR(64) NOT NULL,
 ActivityDate DATE NOT NULL,
)

1 Downs, Kenneth. “History Tables”. – The Database Programmer, 20. VII 2008, http://database-
programmer.blogspot.com/2008/07/history-tables.html, used 06. III 2020.

2 Ibid

25

http://database-programmer.blogspot.com/2008/07/history-tables.html
http://database-programmer.blogspot.com/2008/07/history-tables.html

Steps to perform soft update:

1. UPDATE the original row data

2. INSERT data about the actions in the history table

Soft update:

1. DELETE the original row data

2. INSERT data about the actions in the history table

-- CURRENT TIME
DECLARE @CurrentTime DATETIME2
SELECT @CurrentTime = '2020-05-01'

-- SELECT ALL / VALID

SELECT * FROM LocationOnlyClean

-- SELECT HISTORY
SELECT * FROM LocationOnlyHistory

Table 4: Selected results and queries from 1 table soft delete and soft update

4.3.2 Test case: 1:M relationship

1:M test case is more complex, since every table needs a history table and more

connections make hard to track data and actions.

Test tables:

CREATE TABLE LocationClean (
 LocationCID INT IDENTITY PRIMARY KEY,
 Name VARCHAR(64) NOT NULL,
)

CREATE TABLE AssetClean (
 AssetCId INT IDENTITY PRIMARY KEY,
 Value INT NOT NULL,
 LocationCID INT NOT NULL,
 CONSTRAINT FK_AssetC_LocationC FOREIGN KEY (LocationCID) REFERENCES LocationClean(Loca-
tionCID)
)

CREATE TABLE LocationHistory (
 LocationHID INT IDENTITY PRIMARY KEY,
 LocationCID INT NOT NULL,
 Name_old VARCHAR(64) NOT NULL,
 Name_new VARCHAR(64) NOT NULL,
 Activity VARCHAR(64) NOT NULL,
 ActivityDate DATE NOT NULL,
)

26

CREATE TABLE AssetHistory (
 AssetHId INT IDENTITY PRIMARY KEY,
 AssetCId INT NOT NULL,
 Value_old INT NOT NULL,
 Value_new INT NOT NULL,
 Value_diff INT NOT NULL,
 Activity VARCHAR(64) NOT NULL,
 ActivityDate DATE NOT NULL,
 LocationCID INT NOT NULL,
 LocationHID INT NULL,
 CONSTRAINT FK_AssetH_LocationH FOREIGN KEY (LocationHID) REFERENCES LocationHistory(Loc-
ationHID)
)

Steps to perform soft update:

1. UPDATE the original row data

2. INSERT data about the actions in the history table

Soft delete on location:

1. DELETE the original data

2. INSERT data about the actions in the history table

3. UPDATE AssetHistory LocationHistoryID to delete event in LocationHistory

All inserted data and some query result:

-- CURRENT TIME

DECLARE @CurrentTime DATETIME2

SELECT @CurrentTime = '2020-05-01'

-- SELECT ALL/VALID

 SELECT AssetClean.Value AS 'ASSET VALUE',

 LocationClean.Name AS 'LOCATION NAME'

 FROM AssetClean

 JOIN LocationClean

 ON AssetClean.LocationCID = LocationClean.LocationCID

-- SELECT INSERTED AND SUMMED

 SELECT

 SUM(AssetHistory.Value_new) AS 'Asset Value',

 LocationHistory.Name_new AS 'Asset name',

 LocationHistory.ActivityDate AS 'Date inserted'

 FROM AssetHistory

 INNER JOIN LocationHistory

 ON AssetHistory.LocationHID = LocationHistory.Loca-

tionHID

 WHERE NOT LocationHistory.Name_new = '-'

 GROUP BY LocationHistory.Name_new, LocationHis-

tory.ActivityDate

27

-- SELECT ASSET WITH LOCATION - INVALID

 SELECT

 STRING_AGG(AssetHistory.Value_new, ', ') AS

'Asset Value',

 LocationHistory.Name_new AS 'Asset name',

 LocationHistory.ActivityDate AS 'Date inserted'

 FROM AssetHistory

 INNER JOIN LocationHistory

 ON AssetHistory.LocationHID = LocationHistory.Loca-

tionHID

 WHERE NOT LocationHistory.Name_new = '-'

 AND NOT EXISTS (

 SELECT LocationCID

 FROM LocationClean

 WHERE LocationHistory.LocationHID = Location-

Clean.LocationCID)

 GROUP BY LocationHistory.Name_new, LocationHis-

tory.ActivityDate

Table 5: Selected results and queries from 1:M tables soft delete and soft update

4.3.3 Test case: 1:0-1 relationship

1:0-1 test case is similar to 1:M .

Test tables:

CREATE TABLE PersonClean (
 PersonCID INT IDENTITY PRIMARY KEY,
 Name VARCHAR(64) NOT NULL,
)

CREATE TABLE PersonHistory (
 PersonHID INT IDENTITY PRIMARY KEY,
 PersonCID INT NOT NULL,
 Name_old VARCHAR(64) NOT NULL,
 Name_new VARCHAR(64) NOT NULL,
 Activity VARCHAR(64) NOT NULL,
 ActivityDate DATE NOT NULL,
)

CREATE TABLE PhotoClean (
 PhotoCID INT IDENTITY PRIMARY KEY,
 Name VARCHAR(64) NOT NULL,
 PersonCID INT NOT NULL,
 CONSTRAINT FK_PhotoC_PersonC UNIQUE (PersonCID)
)

CREATE TABLE PhotoHistory (
 PhotoHId INT IDENTITY PRIMARY KEY,
 PhotoCId INT NOT NULL,
 Name_old VARCHAR(64) NOT NULL,
 Name_new VARCHAR(64) NOT NULL,
 Activity VARCHAR(64) NOT NULL,
 ActivityDate DATE NOT NULL,
 PersonCID INT NOT NULL,
 PersonHID INT NULL,
 CONSTRAINT FK_PhotoH_PersonH UNIQUE (PersonHID)
)

28

Steps to perform soft update on updating the person or photo:

1. UPDATE the original row data

2. INSERT data about the actions in the history table

Soft delete on person:

1. DELETE the original person data

2. INSERT data about the actions in the history table

3. DELETE photo associated with the person

4. INSERT data about the actions in the history table

All inserted data and some query result:

-- CURRENT TIME

DECLARE @CurrentTime DATETIME2

SELECT @CurrentTime = '2020-05-01'

-- SELECT VALID

 SELECT PersonClean.Name, PhotoClean.Name

 FROM PersonClean

 JOIN PhotoClean

 ON PhotoClean.PersonCID = PersonClean.PersonCID

-- SELECT ALL

 SELECT PhotoHistory.Name_new, PersonHistory.Name_new

 FROM PhotoHistory

 JOIN PersonHistory

 ON PhotoHistory.PersonCID = PersonHistory.PersonCID

 WHERE NOT PersonHistory.Name_new = '-'

 AND NOT PhotoHistory.Name_new = '-'

Table 6: Selected results and queries from 1:0-1 tables soft delete and soft update

4.3.4 Pros and cons

Pros:

• Clean data in one table and history in another

Cons:

• Data duplication

• Complex querying

• Easy to make bloat

29

4.4 Conclusions

With only one table its very easy to use Insert-only table. With 1:M relationship or 1:0-1

it’s also not too complicated and data inserting feels more intuitive than with history

tables. Insert only database design seems more intuitive and easier to implement and

maintain. History table has really simple idea, but it’s complicated to implement and

keep track of the tables and indexes. Writing queries were troublesome. In theory

triggers should be used.

30

5 Project design pattern – Repository

The Repository pattern is an abstraction layer between business logic and data source

layers. Its main purpose is to reduce complexity and make the rest of the code persistent

ignorant.1 A Repository queries the data source for the data, maps the data from the data

source to a business entity, and persists changes in the business entity to the data

source.2 As it’s an abstraction, it should always return whatever the layer above wants to

work with.3 Repository should not leak persistence specific information up to the caller

(typically by exposed IQueryable<T>).4

When there are a large number of domain classes or heavy querying then adding this

layer helps minimize duplicate query logic and write less error-prone code.5 When using

repositories, you are forced to use strongly typed business entities which leads again

more convenient codebase.

With separation of concerns it allows you to write easier unit tests for business logic.

You can mock the repository and queries and never handle the real data. Repository pat-

tern reduces the complexity in your tests and allow you to specialize your tests for the

current layer.6

The advantage of using a Repository pattern is that your backend database can be

changed later to use a different technology without having to change the repository in-

terface.

1 “Repository Pattern, Done Right”. Code Project. https://www.codeproject.com/articles/526874/reposit-
ory-pattern-done-right, used 24. III 2020.
2 https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff649690(v=pandp.10)?
redirectedfrom=MSDN, used 24. III 2020.
3 “Repository Pattern, Done Right”. Code Project.
4 Ibid.
5 https://martinfowler.com/eaaCatalog/repository.html, used 24. III 2020.
6 https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff649690(v=pandp.10)?
redirectedfrom=MSDN, used 24. III 2020.

31

Pattern becomes useful only when you have a complex domain or large and complex

enterprise data scenarios, otherwise the maintaining would be an overhead because of

the great deal of isolation and encapsulation within the domain model.7

5.1 DAO - Data Access Object

DAO and Repository pattern are ways of implementing Data Access Layer (DAL).

DAO is also an abstraction object between the business logic and data source layers: it

allows you to access data, and same as Repository, it abstracts the database connection

and communication and returns domain. It has the same advantage to switch the data-

base without other layers knowing about it.

The main difference between the Repository and the DAO is that the DAO is at a lower

level of abstraction and doesn’t speak the common language of the domain.2 There are

also some differences in the way they are: DAO being a bit more flexible/generic, while

Repository is a bit more specific and restrictive to a type only. A Repository can be used

with DAO’s, but DAO can never be used with Repository.3

Author uses Repository pattern since it’s more specific and does not get bloated so eas-

ily with implementations that does not belong there.4 Work in progress...

7 Microsoft documentation. “Microsoft Application Architecture Guide, 2nd Edition”. https://docs.mi-
crosoft.com/en-us/previous-versions/msp-n-p/ee658117(v=pandp.10)?redirectedfrom=MSDN#Domain-
ModelStyle, used 24. III 2020.
2 Cargnelutti, Federico. “Domain-Driven Design: The Repository”. – Federico Cargnelutti, 15. III 2009,
https://blog.fedecarg.com/2009/03/15/domain-driven-design-the-repository/, used 24. III 2020.
3 Stackoverflow. https://stackoverflow.com/questions/8550124/what-is-the-difference-between-dao-and-
repository-patterns, used 24. III 2020.
4 “Don’t use DAO, use Repository. – The Thinking in Objects, 26. VIII 2012,
”https://thinkinginobjects.com/2012/08/26/dont-use-dao-use-repository/, used 24. III 2020.

32

https://blog.fedecarg.com/
https://blog.fedecarg.com/
https://blog.fedecarg.com/

6 Summary

33

References

Cargnelutti, Federico. “Domain-Driven Design: The Repository”. – Federico

Cargnelutti, 15. III 2009, https://blog.fedecarg.com/2009/03/15/domain-driven-design-

the-repository/, used 24. III 2020.

Downs, Kenneth. “History Tables”. – The Database Programmer, 20. VII 2008,

http://database-programmer.blogspot.com/2008/07/history-tables.html, used 06. III

2020.

“Ideas on database design for capturing audit trails”. – StackOverflow, 26. VI 2009,

https://stackoverflow.com/questions/1051449/ideas-on-database-design-for-capturing-

audit-trails, used 06. III 2020.

“Don’t use DAO, use Repository. – The Thinking in Objects, 26. VIII 2012,

”https://thinkinginobjects.com/2012/08/26/dont-use-dao-use-repository/, used 24. III

2020.

Microsoft documentation. “Microsoft Application Architecture Guide, 2nd Edition”.

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658117(v=pandp.10)?

redirectedfrom=MSDN#DomainModelStyle, used 24. III 2020

Stackoverflow. https://stackoverflow.com/questions/8550124/what-is-the-difference-

between-dao-and-repository-patterns, used 24. III 2020.

“Repository Pattern, Done Right”. Code Project.

https://www.codeproject.com/articles/526874/repository-pattern-done-right, used 24. III

2020.

https://martinfowler.com/eaaCatalog/repository.html, used 24. III 2020.

34

	Author’s declaration of originality
	Abstract
	List of abbreviations and terms
	Author’s declaration of originality 2
	Abstract 3
	List of abbreviations and terms 4
	List of tables 7
	1 Introduction 8
	2 Project Scopes 9
	2.1 Scope SMALL 9
	2.2 Scope MEDIUM 12
	2.3 Scope LARGE 14

	3 ERD schema 17
	4 Soft delete and soft update 18
	4.1 Test tables 18
	4.2 Insert-Only Database 19
	4.3 History tables 25
	4.4 Conclusions 30

	5 Summary 31
	References 32
	List of tables
	1 Introduction
	2 Project Scopes
	2.1 Scope SMALL
	2.2 Scope MEDIUM
	2.3 Scope LARGE

	3 ERD schema
	4 Soft delete and soft update
	4.1 Test tables
	4.1.1 1
	4.1.2 1:M relationship
	4.1.3 1:1-0 relationship

	4.2 Insert-Only Database
	4.2.1 Test case: 1 table
	4.2.2 Test case: 1:M relationship
	4.2.3 Test case: 1: 0-1 relationship
	4.2.4 Pros and cons

	4.3 History tables
	4.3.1 Test case: 1 table
	4.3.2 Test case: 1:M relationship
	4.3.3 Test case: 1:0-1 relationship
	4.3.4 Pros and cons

	4.4 Conclusions

	5 Project design pattern – Repository
	5.1 DAO - Data Access Object

	6 Summary
	References

