
TALLINNA TEHNIKAÜLIKOOL

School of Information Technologies

Kerman Saapar IADB184996

Dog Agility Time Measuring System Web App

Distributed systems project

Supervisor: Andres Käver

Tallinn 2020

2

Author’s declaration of originality

I hereby certify that I am the sole author of this thesis. All the used materials, references to the literature

and the work of others have been referred to. This thesis has not been presented for examination

anywhere else.

Author: Kerman Saapar

[dd.mm.yyyy]

3

Table of Contents

Author’s declaration of originality .. 2

Introduction ... 4

1. Overview ... 5

1.1 Hardware ... 5

1.2 Web interface needs .. 5

Analysis ... 7

Soft CRUD .. 7

1:0-M ... 7

1:0-1 .. 11

Conclusion ... 11

Repository ... 12

The problem .. 12

Repository pattern .. 12

Data Access Object (DAO) pattern .. 12

Difference .. 12

Summary ... 14

Used sources ... 15

ERD .. 16

4

Introduction

Dog agility lacks a cost effective and innovative time measuring system. Today’s competitions

use big screens only for current runner time. Also current time measuring systems cost 5000+€,

use long cables and are bulky to carry around. People with bad vision or bad sun angle can’t see

those screens. Every person nowadays has a smartphone in his/her pocket. For that reason, there

is a possibility to innovate dog agility.

The complete system involves hardware, but in the scope of this project, the author is focusing

on the software aspect only.

The purpose of this work is to build a competition/training times application as a distributed

system, which would comply with the demands of the course.

To fulfill this work, the author will create an ERD schema, creates a database and builds

application layers respectively to the lecturer’s requests and wishes.

The course work consists of the documentation (the given document), ERD schema and

application source code.

5

1. Overview

The system is aimed for hobbyists.

The user can see his/her dog running times from his/her smartphone. Follow his/her favorite

dog’s times. Since physical hardware supports time logging from multiple obstacles, there’s a

possibility to compare each other’s track times by obstacle.

The user can also see top times by competition/track/dog breed/class.

When there’s an ongoing competition, connected user can see the current run’s current time from

his/her smartphone. This replaces big screens.

1.1 Hardware

Briefly about hardware.

1-10 physical gates which can be placed at each obstacle on the obstacle course. Gates use 3 IR

sensors for detecting passed object. They work on the same principal as security curtains at big

industrial machines.

Every gate is connected to hub via Wi-Fi. Hub is likely Orange Pi or Banana Pi, because they

have EMMC ram, not SD card like Raspberry Pi.

Hub is connected to our server every time it’s turned on via 3G or 4G. Connection is needed for

validation, if the system subscription is still valid and the money has been payed.

Everything is powered by portable power banks.

1.2 Web interface needs

The main view for non-registered users is participants time’s table. This is similar to WRC rally

results table. There you can see every result for ongoing competition. See every checkpoint’s

time, is he/she faster than the leader, by how much etc. A big timer pops up, when there is an

ongoing run.

6

Registered user can also bookmark his/her favorite dog/owner, to see their track times and

compare it to their own.

Admin can set up new competitions and tracks. Manage results in case of an error and edit them.

Manage physical gates queue

7

Analysis

Soft CRUD

The main idea behind soft CRUD is that we want to keep track of what happened in the past. We

don’t delete anything really. Imagine a slider, where you can slide current time, what was in the

database at that time. How to achieve this?

One way is to create history table. For example, there is Person and PersonHistory tables, every

record is copied to PersonHistory table and logged with a timestamp when was the change done

and finally update the correct record in the Person table. But that doesn’t seem feasible because

when you create a second table for every table, then the tables would double and it gets out of

hand pretty quickly.

Another way is to use composite keys. Composite key is made of row’s “ID” and “Deleted at”

field. When a record is deleted, the deleted at field is set. There would be many same ID fields

with different deleted at. This means that a record has many versions.

Author found that the most universal way is to use composite keys which is made of “ID” and

“Deleted at”.

In the demo, there are only soft update operations, because soft delete is already a step in soft

update.

1:0-M

The first demo contains 1:0-m situation.

Firstly a database is created.

IF db_id('kesaap_hw2') IS NOT NULL BEGIN

 USE master

 DROP DATABASE "kesaap_hw2"

END

GO

CREATE DATABASE "kesaap_hw2"

GO

USE "kesaap_hw2"

GO

8

Second, 2 tables are created, breed and animal which are 1:0-m relationship. The deleted at field

is not nullable, the most logical choice is to use a date far in the future, like year 9999. This is

done, because it simplifies SELECT queries and is easier to understand.

CREATE TABLE Breed (

 Id INT NOT NULL,

 Name VARCHAR(255) NOT NULL,

 CreatedAt DATETIME2 NOT NULL,

 DeletedAt DATETIME2 NOT NULL,

 CONSTRAINT PK_Track PRIMARY KEY (Id, DeletedAt)

)

CREATE TABLE Animal (

 Id INT NOT NULL,

 Name VARCHAR(255) NOT NULL,

 Age INT,

 CreatedAt DATETIME2 NOT NULL,

 DeletedAt DATETIME2 NOT NULL,

 Breed_Id INT NOT NULL,

 Breed_DeletedAt DATETIME2

 CONSTRAINT PK_Animal PRIMARY KEY (Id, DeletedAt),

 CONSTRAINT FK_Animal_Breed FOREIGN KEY (Breed_Id, Breed_DeletedAt) REFERENCES Breed(Id, Delet

edAt)

)

Next some test data is added.

DECLARE @Time1 DATETIME2

SELECT @Time1 = '2017-07-30'

INSERT INTO Breed (Id, Name, CreatedAt, DeletedAt)

VALUES (1, 'Border Collie', @Time1, '9999-12-31')

INSERT INTO Breed (Id, Name, CreatedAt, DeletedAt)

VALUES (2, 'Jack Russell Terrier', @Time1, '9999-12-31')

INSERT INTO Animal (Id, Name, Age, CreatedAt, DeletedAt, Breed_Id, Breed_DeletedAt)

VALUES (1, 'Yes', 2, @Time1, '9999-12-31', 1, '9999-12-31')

INSERT INTO Animal (Id, Name, Age, CreatedAt, DeletedAt, Breed_Id, Breed_DeletedAt)

VALUES (2, 'Fii', 1, @Time1, '9999-12-31', 1, '9999-12-31')

Now the original Breed name “Border Collie” is updated to “Border Collie v2”. First a copy is

made of the original record. Then the deleted at date is changed on the copy record and lastly the

original record is updated to “Border Collie v2”.

DECLARE @Time2 DATETIME2

SELECT @Time2 = '2018-07-30'

9

DECLARE @OriginalId INT

SELECT @OriginalId = Id FROM Breed WHERE Name LIKE 'Border Collie'

INSERT INTO Breed (Id, Name, CreatedAt, DeletedAt) SELECT Id, Name, CreatedAt, @Time2 FROM Bre

ed WHERE Id = @OriginalId

UPDATE Breed SET CreatedAt = @Time2 WHERE Id = @OriginalId AND DeletedAt = '9999-12-31'

UPDATE Breed SET Name = 'Border Collie v2' WHERE Id = @OriginalId AND DeletedAt = '9999-12-31'

SELECT * FROM BREED

10

The same is done to the Animal named “Yes”. It is renamed to “No”.

DECLARE @Time3 DATETIME2

SELECT @Time3 = '2019-03-21'

DECLARE @OriginalId2 INT

SELECT @OriginalId2 = Id FROM Animal WHERE Name LIKE 'Yes'

INSERT INTO Animal (Id, Name, Age, CreatedAt, DeletedAt, Breed_Id, Breed_DeletedAt)

SELECT Id, Name, Age, CreatedAt, @Time3, Breed_Id, Breed_DeletedAt FROM Animal WHERE Id = @Ori

ginalId2

UPDATE Animal SET CreatedAt = @Time3 WHERE Id = @OriginalId2 AND DeletedAt = '9999-12-31'

UPDATE Animal SET Name = 'No' WHERE Id = @OriginalId2 AND DeletedAt = '9999-12-31'

SELECT * FROM Animal

Lastly two SELECT queries is done to show how changing the date gives two different results.

DECLARE @TimeNow DATETIME2

SELECT @TimeNow = '2018-03-20'

SELECT 'Before change'

-- Include Animal table with left join based on ID

SELECT * FROM Breed LEFT JOIN Animal ON Breed.Id = Animal.Breed_Id

-- CreatedAt has to be smaller than the checked time

WHERE Breed.CreatedAt <= @TimeNow

-- DeletedAt has to be bigger than the checked time

-- So that the checked time lands between times

AND Breed.DeletedAt > @TimeNow

-- Select animals who are linked to that breed

--and created at and deleted at also have to be in between checked time

AND ((Animal.Id IS NOT NULL

AND Animal.CreatedAt <= @TimeNow

AND Animal.DeletedAt > @TimeNow)

-- OR include entries which dont have any animals linked to them

OR (Animal.Id IS NULL))

DECLARE @TimeNow2 DATETIME2

SELECT @TimeNow2 = '2019-03-22'

SELECT 'After change'

SELECT * FROM Breed LEFT JOIN Animal ON Breed.Id = Animal.Breed_Id

WHERE Breed.CreatedAt <= @TimeNow2

AND Breed.DeletedAt > @TimeNow2

AND ((Animal.Id IS NOT NULL

AND Animal.CreatedAt <= @TimeNow2

AND Animal.DeletedAt > @TimeNow2)

OR (Animal.Id IS NULL))

11

1:0-1

1:0-1 is not possible for soft update, because when you make an update, you would need a copy.

This already violates the point of 1:0-1, because then you would have 2 records pointing to the

same parent ID which results to 1:0-M relationship.

One way is to create a new parent and new childs and link them all together, but that would

create a lot of useless records and just isn’t feasible. Its simpler to create 1:0-M relationship.

Conclusion

Soft CRUD takes a lot of thinking to implement. There is no single right answer how to

implement it, because there are many options to achieve this. Also soft CRUD is a double-edged

sword. Now you need to take into consideration GDPR, when a user demands that you delete

their data. There is some data that you need to keep based on laws and some data that you need

to delete.

12

Repository

The problem

Imagine manipulating data from directly business logic. What happens when there’s a need to

change the database? Different database has quirks that are mandatory to adapt to. This means

that it’s needed to rewrite business logic to adapt to the new database. Which means extra work.

How can the business logic be unit tested, when the data operations are done directly in the

business logic? You must rewrite every data operation also.

Repository pattern

Repository pattern separates data operations from business logic. Business logic knows nothing

how the data is inserted into the database and how it’s taken from it. This means that its loosely

coupled. The data layer is completely abstracted away, which allows to swap out the database

management system for some other provider or use completely different type of data persistence

layer.

The repository handles with domain objects.

When the business logic doesn’t know about data operations, its easy to unit test business logic.

Because you can send mocked data straight into business logic.

Data Access Object (DAO) pattern

DAO is much closer to data storage. DAO allows for a simpler way to get data from a storage,

hiding ugly queries. Its goal is like of the repository pattern, but it is not as flexible as the

repository pattern is. DAO is a class that locates the data. The pattern doesn’t restrict you to store

data of the same type, so you can easily have a DAO that locates/store related objects.

Difference

Repository is an abstraction of DAO. You may use multiple DAO’s inside a repository. A

repository deals with domain objects hence higher level. DAO is lower level, closer to the

storage, dealing only with data. Its easier to unit test a repository. You may also implement

caching into repository

13

Project implementation

In author’s project, he will use the repository pattern to separate business and database logic.

Because its more flexible. This also allows to reuse code in any upcoming projects that may

come.

Currently there is a base repository which implements all basic CRUD and every specific

repository derive from base repository. This means that every specific repository could add

specific methods for that repository.

Also, the Unit of Work (UOW) is implemented. UOW is handling saving data to database.

CRUD operations are done by repositories.

14

Summary

15

Used sources

1. https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-

patterns/infrastructure-persistence-layer-design

2. https://deviq.com/repository-pattern/

https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/infrastructure-persistence-layer-design
https://deviq.com/repository-pattern/

16

ERD

