
Rich Domain Model Design and Persistence Blueprint
for Applications Using a Relation Database in .NET 9
Bachelor’s thesis draft

Author: Jonathan Sillak

Supervisor:

Topic explanation
Domain model design is one of the underlying tasks for creating an e=icient software
application. Whether building a simple webpage or a worldwide software application,
there is no way around domain models when persisting information in the database.

Overall, there are two di=erent approaches to domain model design: Anemic and Rich
Domain Model design. Anemic Domain Model design keeps the database entities
simple by separating the business logic into services. The classification of an Anemic
Domain Model as an anti-pattern is a subject of debate among software architects.
Anemic Domain Model design suits smaller projects, where the business complexity is
relatively low, and the overhead of implementing a fully-fledged domain model may
outweigh its benefits [1].

On the other hand, Rich Domain Model design encapsulates the validation logic inside
the domain class – making the domain models harder to persist in the database [3] but
providing stronger guarantees of data integrity and business rule enforcement. While an
Anemic Domain Model approach can su=ice for smaller projects, allowing for quicker
development and easier maintenance, but as the project scales and business rules
become more intricate, the limitations of this pattern become apparent, potentially
leading to increased technical debt and decreased code maintainability in the long run
[2].

While many developers are aware of these two domain model designs, they tend to
favor the Anemic design for the ease of implementation [3] and lack of available
material on the alternative. Another problem is the complexity of creating a scalable,
Rich Domain Model design, which is easy to extend when the business requirements
change or evolve. Implementing the Rich Domain Model is a complex task because it
requires foresight and deep analysis of design patterns.

Overview of scientific publications. Problem explanation
The issue of designing a Rich Domain Model and a thin service layer dates back over 30
years when Eric Evans writes in 2003: “I have spent the past decade focused on
developing complex systems in several business and technical domains. […] A feature
common to the successes was a rich domain model that evolved through iterations of
design and became part of the fabric of the project.” [4]. Another article from the same
year by Martin Fowler emphasizes the relevant problem of Anemic Domain Model
design as anti-pattern having a spurt in the software development industry [3].

The main obstacle of implementing Rich Domain Model design is the complexity of
persisting these entities in the database. Rich Domain Model focuses on the use of
value objects instead of primitive types, this works perfectly until the developer starts
saving these entities in the database [3]. Why? Well, we don’t want to create a database
entity for every value object in our domain model. On the other hand we can’t directly
save objects into the database without creating a new entity.

There are techniques to get around this problem, but the solutions don’t have a clear set
of principles. One technique is the separation of domain and persistence models,
where all the validation logic is handled in the Rich Domain Model and the actual saving
to database is done through another domain entity [5].

Another solution is creating a piece of middleware code, which translates the object
into primitive types (like strings) when saving to database and reconstructs them into
objects when loading from the database [6].

For the technical details, the author of the thesis will rely on available material on the
topic. One author in this field is Zoran Horvat, who constantly publishes up to date
content on Domain Driven Design using the latest techniques in the .NET world. Another
great source of knowledge is Milan Jovanović, who provides content using the .NET
framework.

This thesis addresses a critical gap in modern software development practices,
particularly in the ASP.NET ecosystem. While Rich Domain Model design has been
recognized as a powerful approach for complex systems, there is a notable lack of
comprehensive, up-to-date guidance on implementing this pattern in ASP.NET
applications. This work aims to bridge that gap by providing a practical, scalable
blueprint that combines theoretical foundations with cutting-edge implementation
techniques. It serves as both a foundation for more complex projects and a
philosophical guide for sound architectural practices, rather than a rigid rulebook for
every scenario.

Methodology
In the course of the thesis, the author will constantly read, old and new, relevant
material to expand his knowledge on the topic and be up to date. Since software
development and ASP.NET framework develops progressively and as a result previous
knowledge depreciates quickly, the author will be using the .NET 9 version.

This thesis combines the ideas of multiple authors and the practical expirience of the
bachelor’s thesis author to find the latest and e=icient solution for encapsulating the
business logic inside the domain model while simplifying the persistence to the
database.

Work structure
Implement the base properties, like id, creation and update information, as a separate,
inheritable class, reducing code duplication on every domain model.

Create sample domain models to demonstrate the common problematic use cases of
the Anemic Domain Model and refactor them following the principles of Domain Driven
Design, thus demonstrating the benefits of the Rich Domain Model design.

Implement the persistence logic for these domain models, analysing the di=erent
possibilities and choosing the suitable method according to the use case. This involves
converting the value objects into primitive types and vice versa whenever possible.

Validation
For the validation of this thesis, the author will be comparing the Anermic and Rich
Domain Model design implementations and analyse their performance in a growingly
complex hypothetical scenario. This analysis will examine scalability, readability,
mainteance and testability.

References
[1] Milan Jovanović (2023). Refactoring From an Anemic Domain Model To a Rich
Domain Model. https://www.milanjovanovic.tech/blog/refactoring-from-an-anemic-
domain-model-to-a-rich-domain-model

[2] Khalil Stemmler (2019). “Anemic Domain Model”.
https://khalilstemmler.com/wiki/anemic-domain-model/

[3] Martin Fowler (2003). Anemic Domain Model.
https://martinfowler.com/bliki/AnemicDomainModel.html

[4] Eric Evans (2003). Domain-Driven Design: Tackling Complexity in the Heart of
Software. pp. 7

[5] Vladimir Khorikov (2016. Having the domain model separated from the persistence
model. https://enterprisecraftsmanship.com/posts/having-the-domain-model-
separate-from-the-persistence-model/

[6] Zoran Horvat (2024). Here Is the Most Powerful EF Core Configuration Technique.
https://www.patreon.com/posts/source-for-here-111955171

