
Guidelines for Conducting Software
Engineering Research

Klaas-Jan Stol and Brian Fitzgerald

Abstract This chapter presents a holistic overview of software engineering research
strategies. It identifies the two main modes of research within the software engineer-
ing research field, namely knowledge-seeking and solution-seeking research—the
Design Science model corresponding well with the latter. We present the ABC
framework for research strategies as a model to structure knowledge-seeking re-
search. The ABC represents three desirable aspects of research—generalizability
over actors (A), precise control of behavior (B) and realism of context (C). Unfortu-
nately, as our framework illustrates, these three aspects cannot be simultaneously
maximised. We describe the two dimensions that provide the foundation of the ABC
framework—generalizability and control, explain the four different types of settings
in which software engineering research is conducted, and position eight archetypal
research strategies within the ABC framework. We illustrate each strategy with
examples, identify appropriate metaphors, and present an example of how the ABC
framework can be used to design a research programme.

1 Introduction

Research methodology—the study of research methods—is receiving increasing
attention from software engineering (SE) researchers. Numerous books and papers
have been written on the topic (Easterbrook et al. 2008; Glass et al. 2002; Seaman
1999; Singer et al. 2000; Stol et al. 2016b; Wohlin et al. 2012). While these are very

K.-J. Stol (�)
Lero—the Irish Software Research Centre and School of Computer Science and Information
Technology, University College Cork, Ireland
e-mail: klaas-jan.stol@lero.ie

B. Fitzgerald
Lero—the Irish Software Research Centre and Department of Computer Science and Information
Systems, University of Limerick, Ireland
e-mail: bf@lero.ie

M. Felderer, G. H. Travassos (eds.), Contemporary Empirical Methods in Software
Engineering, https://doi.org/10.1007/978-3-030-32489-6_2

1

https://orcid.org/0000-0002-1038-5050
https://orcid.org/0000-0001-9193-2863
klaas-jan.stol@lero.ie
bf@lero.ie
https://doi.org/10.1007/978-3-030-32489-6_2

2 K.-J. Stol and B. Fitzgerald

useful reference works, there are several issues with the current state of literature on
methodology. First, there is a strong emphasis on a limited set of specific methods,
in particular experimentation, case studies, and survey studies. Although these are
the three most used empirical methods (Stol and Fitzgerald 2018), many other
methods exist that have not received the same level of attention. A second issue
is that the field has no agreement on an overall taxonomy of methods, which is
somewhat problematic as methods vary in terms of granularity and scope. This
makes a systematic comparison of methods very challenging. Furthermore, new
methods are being adopted from other fields. Grounded Theory, for example, has
gained widespread adoption within the SE literature in the last 15 years or so
(Stol et al. 2016b). (We note that, like many other methods used in SE, Grounded
Theory is not a ‘new’ method, as it was developed in the 1960s by social scientists
Glaser and Strauss—however, its application is relatively new to the SE domain).
Other techniques and methods that are relatively new to the software engineering
field include the Repertory Grid Technique (Edwards et al. 2009) and ethnography
(Sharp et al. 2016). With new methods and techniques being adopted regularly, it
becomes challenging to understand how these new methods compare to established
approaches. Further, numerous sources present a range of research methods, but
these presentations are limited to “shopping lists” of methods: definitions without a
systematic comparison. Rather than maintaining a list of definitions of research
methods, a more systematic approach is needed that allows us to reason and position
existing methods, and new methods as they emerge. Hence, in this chapter we
present a taxonomy of research strategies.

There is an additional challenge within the software engineering research
community. Different methods have varying strengths and drawbacks, but it is
quite common to see unreasonable critiques of studies due to the research methods
employed. For example, a common complaint in reviews of case studies is that they
do not allow statistical generalizability. Similarly, experiments are often critiqued
on the basis that they involved computer science students solving ‘toy’ problems,
thus rendering them unrealistic, and therefore not worthy of publication. Not
unreasonably, researchers may wonder which method, then, is the silver bullet that
can address all of these limitations?

The answer is none.
Instead of discussing research methods, we raise the level of abstraction and

have adopted the term research strategy. A research strategy can be considered a
category of research methods that have similar trade-offs in terms of generalizability
and the level of obtrusiveness or control of the research context—we return to these
two dimensions in a later section in this chapter. Previously, we outlined what we
have termed the ABC framework of research strategies, and demonstrated how this
taxonomy is suitable for software engineering research (Stol and Fitzgerald 2018).
In this chapter we draw on this earlier work, elaborate on how the ABC framework
is related to Design Science, and provide general guidance for researchers to select
appropriate research strategies.

The remainder of this chapter is organized as follows. Section 2 starts with a
discussion of research goals, dimensions, and settings. This section presents the

Guidelines for Conducting Software Engineering Research 3

two modes of research, namely knowledge-seeking and solution-seeking research.
It outlines the ABC framework, and positions it in relation to Design Science.
Section 3 discusses the eight archetypal research strategies that are represented
within the ABC framework. For each strategy, we discuss the essence of the strategy,
identify a metaphor for the strategy, and provide high-level guidelines. Because
research studies are never conducted in isolation, we discuss in Sec. 4 how the ABC
framework can be used to design research programmes. Section 5 offers a list of
recommended readings. Finally, Section 6 concludes the chapter.

2 Foundations

This section introduces a number of concepts that together form the foundation
for the ABC framework. We first introduce the two modes of research in software
engineering: knowledge-seeking and solution-seeking research. These are two
distinct modes representing different types of activities. This chapter focuses
primarily on one mode, namely knowledge-seeking research, but contrasts it with
solution-seeking research. In so doing, we draw a link to Design Science. Much has
been written on Design Science, which is why we do not discuss it in this chapter.
Instead, we refer interested readers to chapter “The Design Science Paradigm as a
Frame for Empirical Software Engineering” of this book.

We then return our attention to knowledge-seeking research, and introduce
two key dimensions that are present in all knowledge-seeking studies: the level
of obtrusiveness and generalizability. Each research strategy represents a unique
combination along these two dimensions. This section ends with a discussion
of research settings, which refers to the environment in which the research is
conducted.

2.1 Knowledge-Seeking vs. Solution-Seeking Research

There are two modes of software engineering research: knowledge-seeking and
solution-seeking research. These two modes address different types of questions;
Wieringa (2009) has referred to these as knowledge questions and practical problems,
respectively. Figure 1 presents how these two modes of research are positioned
within the wider context of SE research, the real world, and the SE knowledge base.

Knowledge-seeking studies aim to learn something about the world around us by
making observations in some type of environment—this includes the technologies,
organizations, and people in natural, contrived, or simulated (virtual) settings.
Knowledge-seeking research studies lead to new knowledge, which is typically
reported in research papers and books, thereby contributing to the software engi-
neering knowledge base, from which researchers may draw when designing new
studies.

4 K.-J. Stol and B. Fitzgerald

In solution-seeking studies, researchers design, create, or develop solutions
for a given software engineering challenge. The outcome of these studies include
algorithms, models, and tools. Such solution-seeking studies may draw applicable
knowledge from the SE knowledge base, which might have originated in either
knowledge-seeking or solution-seeking research. Much research within the SE
domain is solution-seeking with resulting design artifacts. These artifacts represent
“design knowledge,” in that they embody knowledge on how a particular engineering
problem can be solved—and this knowledge is added to the SE knowledge base
as well. Solution-seeking studies fit very well within a Design Science framework
(March and Smith 1995; Simon 1996), as discussed in more detail in chapter “The
Design Science Paradigm as a Frame for Empirical Software Engineering” of
this book. Implemented solutions can be deployed into the real world, and their
effectiveness or utility can be studied using knowledge-seeking research. We note
that the research process for Design Science as proposed by Hevner et al. (2004)
does not align perfectly with solution-seeking research but claims a wider scope that
includes evaluation studies—we categorize the latter firmly as knowledge-seeking
studies.

As Wieringa (2009) has pointed out, knowledge-seeking and solution-seeking
research can be interlinked—nested, even—because knowledge is needed to design
solutions, and once designed, a researcher is interested in learning whether the
solution works, or how well it compares to other solutions. This linkage is represented
by the two white arrows in Fig. 1. In this chapter we are primarily concerned with
strategies to conduct knowledge-seeking research, and refer readers interested in

Knowledge-
seeking research

ABC Framework

Solution-seeking
research

Design Science

Environment
Technology, Organizations, People

Observations

Design
knowledge

Deployment of
Solutions

Software Engineering Knowledge base

New
knowledge

Software
Engineering
Research

Theoretical
knowledge

Applicable
knowledge

Fig. 1 Knowledge seeking and solution-seeking research: positioning the ABC framework and
Design Science

Guidelines for Conducting Software Engineering Research 5

Design Science to chapter “The Design Science Paradigm as a Frame for Empirical
Software Engineering.”

2.2 Two Dimensions of Research: Obtrusiveness
and Generalizability

In the remainder of this chapter we focus primarily on knowledge-seeking research.
Numerous methods can be used to “seek knowledge,” and as mentioned above,
there are numerous sources in the software engineering literature that provide lists
of methods. However, a systematic framework to position these methods in relation
to one another has been lacking. To address this, we draw on McGrath (1981,
1984, 1995), who organized the most common methods in the social sciences
into a methodological “circumplex” that positions eight research strategies. We
operationalized the circumplex for a software engineering context, and have labeled
the result the “ABC framework” for reasons that will become clear. Below we
explain the key concepts of this framework.

Less obtrusive research

More obtrusive research

Increasingly
more
universal
contexts and
systems

Increasingly
more specific
contexts and

systems

Fig. 2 Two dimensions in knowledge-seeking research

6 K.-J. Stol and B. Fitzgerald

The framework is organized along two dimensions: obtrusiveness and generaliz-
ability (see Fig. 2). The first dimension is concerned with how obtrusive the research
is: to what extent does a researcher “intrude” on the research setting, or simply make
observations in an unobtrusive way. Research methods can vary considerably in the
level of intrusion and resulting level of ‘control’ over the research setting. Clearly,
a study that seeks to evaluate the efficiency or performance of a tool requires a
careful study set-up, whereas a case study study that seeks to describe how agile
methods are tailored at one specific company does not (Fitzgerald et al. 2013).

The second dimension is the level of generalizability of research findings. This
is a recurring concern in software engineering research, in particular in the context
of case studies. Indeed, exploratory case studies, and other types of field studies, are
limited in that the researcher cannot draw any statistically generalizable conclusions
from such studies. However, generalization of findings is not the goal of such
studies—instead, exploratory case studies and other types of field studies aim to
develop an understanding rather than generalization of findings across different
settings. Exploratory case studies can be used to theorize and propose hypotheses
about other similar contexts.

It is worth noting that a broader view of generalizability beyond that of the
statistical sample-based one has also been identified (e.g., Yin (2014); Lee and
Baskerville (2003)). Yin identifies Level 1 inference generalizablility which has two
forms. The first is the widely known statistical generalizability from a representative
sample to a population. He also identifies another Level 1 inference, namely from
experimental subjects to experimental findings, which is also quite relevant to
our research strategies. However, Yin also suggests a further Level 2 inference
category of analytic generalizability which involves generalizing to theory. This
could involve generalizing from a sample to a population, or, indeed, generalizing
from field study findings or experimental findings.

2.3 Research Settings

Research takes place in different settings, that is, the environment or context within
a researcher conducts research. McGrath (1984) identified four different types of
settings to conduct research. Building on the two dimensions described above, these
settings are positioned as four quadrants at a 45 degree angle with the main axes
that represent the two dimensions described above (see Fig. 3).

The first type of settings is natural settings, represented as Quadrant I. Natural
settings are those that naturally occur in the ‘field’ and that exist independently from
the researcher conducting research; that is, settings that are host to the phenomenon
that a researcher wishes to study. For example, the ‘field’ for a study on software
process improvement is likely to be a software development organization, whereas
the ‘field’ can also be the online communication channels when the topic of study is
a particular open source software development project (Mockus et al. 2000)—after
all, for open source developers, these online channels are the (virtual) place where

Guidelines for Conducting Software Engineering Research 7

Less obtrusive research

More obtrusive research

Increasingly
more
universal
contexts and
systems

Increasingly
more specific
contexts and

systems

Q
uadrant I

Natural Settings

Quadrant II
Contrived Settings

Q
ua

dr
an

t I
V

Ne
ut

ra
l S

et
tin

gs

Quadrant IV
Non-empirical Settings

Fig. 3 Research settings in knowledge-seeking research

they communicate and do work. Natural settings are always specific and concrete,
rather than abstract and general; hence, the quadrant representing natural settings is
positioned on the right-hand side of Fig. 3. Researchers may still exert some level
of control over a natural setting (Quadrant I, above the x axis), or may simply make
empirical observations without manipulating the research setting (below the x axis).

In contrast to natural settings, contrived settings (represented as Quadrant II)
are created by a researcher for the study. In a software engineering research context,
contrived settings include laboratories with specific and dedicated equipment to
conduct an experiment on some algorithm or software tool. Contrived settings are
characterized by a significant degree of control by the researcher. This manifests as
the set-up of specialized equipment and measurement instruments that facilitate the
execution of a study. Many experimental studies within software engineering are
conducted in such contrived settings, whereby algorithms and tools are evaluated
for performance and precision. Contrived settings are created by a researcher to
either mimic some specific or concrete class of systems (right-hand side of Quadrant
II), or a more abstract and generic class of systems (left-hand side of Quadrant II).
Either way, a contrived setting is always specifically set up by a researcher, implying
the researcher has a high degree of control over the research—hence, Quadrant II is
positioned at the upper half of the x axis. A contrived setting is essential to conduct

8 K.-J. Stol and B. Fitzgerald

the research—without measurement instruments and other tools such as the design
of scenarios or tasks for human participants, the study could not be performed.

There are, however, also studies that do not rely on a specific setting. Some
types of studies can take place in any setting, and so the setting is neutral—this is
represented in Fig. 3 as Quadrant III. Researchers may or may not manipulate the
research setting; in any case, because the research setting is neutral and not specific
to any concrete or specific instance, Quadrant III is positioned at the left-hand side
of the x axis.

Finally, the fourth type of setting is non-empirical, represented by Quadrant IV
in Fig. 3). That is, this type of research does not lead to any empirical observations.
Within software engineering, non-empirical research includes the development of
conceptualizations or theoretical frameworks, and computer simulations. While
software engineering as a field of study has not traditionally been strongly focused
on the development of theory, several initiatives have emerged in recent years to
address this (Stol and Fitzgerald 2015; Ralph 2015; Wohlin et al. 2015). Quadrant IV
is positioned at the bottom of Fig. 3 because the researcher does not ‘intrude’ on any
empirical setting. Non-empirical research is typically conducted at the researcher’s
desk or in his or her computer, through the development of symbolic models and
computer programs that mimic real settings.

2.4 The ABC of Software Engineering Research

Having laid the foundations for the ABC framework, we now populate the grid
in Fig. 3 with eight archetypal research strategies. The result is what we have
termed the ABC framework (see Fig. 4). Several of the research strategies will
sound familiar, for example Field Study, Laboratory Experiment, and Sample Study,
which includes survey studies. Other terms such as Experimental Simulation may
be less known within the SE field. Section 3 presents each of these eight strategies
in detail. We now turn our attention to the last aspect of the framework, which are
the markers A, B, and C.

The term ‘ABC’ seeks to convey the fact that knowledge-seeking research
generally involves actors (A) engaging in behavior (B) in a particular context (C).
Within software engineering, actors include software developers, users, managers,
and when seeking to generalize over a ‘population,’ can also include non-human
artefacts such as software systems, tools and prototypes. Behavior can relate to
that of software engineers, such as coordination, productivity, motivation, and
also system behavior (typically involving quality attributes such as reliability and
performance). Context can involve industrial settings within organizations, open
source communities, or even classroom or laboratory settings.

In the context of our discussion on obtrusiveness and generalizability above,
researchers will want to maximize the generalizability of the evidence across
actor populations (A), while also exercising precise measurement and control over
behavior (B) being studied, in as realistic a context (C) as possible. However,

Guidelines for Conducting Software Engineering Research 9

Experimental
Simulations

Laboratory
Experiments

Judgment
Studies

Sample
Studies

Formal
Theory

Computer
Simulations

Field
Experiments

Field
Studies

Less
obtrusive
research

More
obtrusive
research

Increasingly more universal
contexts and systems

Increasingly more specific
contexts and systems

Quadrant II
Contrived research settings

Q
uadrant I

N
atural research

settings

Quadrant IV
Non-empirical research settings

Q
ua

dr
an

t I
II

N
eu

tra
l r

es
ea

rc
h

se
tti

ng
s

Maximum potential for
generalizability over Actors

Maximum potential for
realism of Context

Maximum
potential for
precision of

measurement of
actors’ Behavior

A

C

B

Fig. 4 The ABC framework positions eight archetypal research strategies along two dimensions:
generalizability of findings and obtrusiveness of the research (adapted from McGrath (1984)

as McGrath (1981) pointed out, it is impossible to maximize all three goals
simultaneously. Increasing precision of measurement and control of behavior (B)
for example, inevitably intrudes on and reduces the naturalness and thus the realism
of the context (C). Conversely, if one seeks to preserve the realism of context (C),
this will reduce both the precision of measurement of behavior (B), and also the
degree of generalizability over actors (A). This is reflected in Fig. 4 which identifies
the research strategies that are best positioned to deliver for each of the A, B and C.
Sample studies can achieve high generalizability (A) but they sacrifice realism of
context (C) and precision of behavior (B). Laboratory experiments allow precise
measurement and control of behavior (B) but this comes at the expense of the
realism of context (C) and generalizability (A). Field studies maximize the realism
of context (C) but this is at the expense of control of behavior (B) and generalizability
(A). Clearly, the full range of research strategies are required to deliver across all
three research goals, and these need to be planned and managed. The above also
highlights the fact that certain strategies have inherent and intrinsic weaknesses
which cannot be overcome—thus field studies can never provide generalizability,
but that is neither their purpose nor strength, and this is not a limitation which can

10 K.-J. Stol and B. Fitzgerald

be overcome when using this research strategy. Therefore, research studies adopting
that strategy should not be criticized on that basis.

3 Strategies for Software Engineering Research

In this section we outline the eight archetypal research strategies that are positioned
in the ABC framework in Fig. 4. We discuss the research strategies as organized
by the quadrants discussed in Sec. 2.3, starting in Quadrant I. Table 1 summarizes
the discussion for each strategy, including a metaphor that might help in better
understanding the nature and essence of the research strategy, how that setting
manifests in software engineering research, and general suggestions as to when to
use that strategy.

3.1 Field Studies

Field studies are conducted in natural settings; that is, settings that pre-exist the
design of the research study. Field studies are best suited for studying specific
instances of phenomena, events, people or teams, and systems. This type of
research helps researchers to understand “what’s going on,” “how things work,”
and tends to lead to descriptive and exploratory insights. Such descriptions are
useful because they provide empirical evidence of phenomena that are relevant to
software engineering practitioners, students, and researchers. The findings may
provide the basis for hypotheses, which can then be further studied using other
strategies. Typical examples in software engineering research are the case studies of
the Apache web-server (Mockus et al. 2000) and agile method tailoring (Fitzgerald
et al. 2013).

Field studies are relatively unobtrusive with respect to the research setting. The
setting for field studies is akin to a jungle, a natural setting that contains unexplained
phenomena, unknown tribes, and secrets that the researcher seeks to discover and
understand (see Fig. 5). Within a software engineering context, the researcher does
not manipulate the research setting, but merely collects data to describe and develop
an understanding of a phenomenon, a specific system, or a specific development
team. This is why field studies are best suited to offer a high degree of realism of
context as the researcher studies a phenomenon within its natural setting, and not
one that the researcher manipulated.

Typical research methods include the descriptive or exploratory case study, and
ethnography (Sharp et al. 2016), but archival studies of legacy systems also fall
within the category of field studies, for example, Spinellis and Avgeriou’s study
of the evolution of Unix’s system architecture (Spinellis and Avgeriou 2019). An
alternative metaphor for such archival studies is an archaeological site rather than
a jungle. Data collection methods for field studies include (but are not limited to)

Guidelines for Conducting Software Engineering Research 11

Ta
bl

e
1

Re
se

ar
ch

str
at

eg
ie

si
n

so
ftw

ar
e

en
gi

ne
er

in
g

St
ra

te
gy

M
et

ap
ho

r
Se

tti
ng

in
SE

W
he

n
to

U
se

Fi
el

d
St

ud
y

Ju
ng

le
:a

na
tu

ra
ls

et
tin

g
th

at
is

id
ea

lly
le

ft
un

-
to

uc
he

d,
w

he
re

cr
ea

tu
re

sa
nd

pl
an

ts
ca

n
be

ob
-

se
rv

ed
in

th
e

w
ild

w
ith

a
gr

ea
tl

ev
el

of
de

ta
il.

So
ftw

ar
e

en
gi

ne
er

in
g

ph
en

om
en

a
in

a
na

tu
ra

l
co

nt
ex

t,
su

ch
as

Pa
ir

Pr
og

ra
m

m
in

g
in

in
du

str
y,

op
en

so
ur

ce
so

ftw
ar

e
pr

oj
ec

ts,
et

c.

To
un

de
rs

ta
nd

ph
en

om
en

a:
ho

w
do

es
it

w
or

k?
ho

w
an

d
w

hy
do

pr
oj

ec
tt

ea
m

sd
o

w
ha

tt
he

y
do

?
w

ha
ta

re
ch

ar
ac

te
ris

tic
so

fa
ph

en
om

en
on

?
M

ax
-

im
um

po
te

nt
ia

lt
o

ca
pt

ur
e

a
re

al
ist

ic
co

nt
ex

t.
Fi

el
d

Ex
pe

rim
en

t
N

at
ur

e
re

se
rv

e:
a

na
tu

ra
ls

et
tin

g
th

at
ha

ss
om

e
le

ve
l

of
m

an
ip

ul
at

io
n,

e.
g.

fe
nc

es
,

ba
rr

ie
rs

,
cl

os
ed

-o
ff

se
ct

io
ns

,s
ec

tio
ns

tre
at

ed
w

ith
so

m
e

in
te

rv
en

tio
n.

In
du

str
y

or
op

en
so

ur
ce

so
ftw

ar
e

pr
oj

ec
ts

or
te

am
s

w
ith

so
m

e
le

ve
lo

f
re

se
ar

ch
er

in
te

rv
en

-
tio

n;
in

te
rv

en
tio

ns
co

ul
di

nc
lu

de
di

ffe
re

nt
w

or
k-

flo
w

s,
to

ol
s.

To
m

ea
su

re
‘e

ffe
ct

s’
of

so
m

e
in

te
rv

en
tio

n
in

a
na

tu
ra

ls
et

tin
g,

ac
kn

ow
le

dg
in

g
la

ck
of

pr
ec

isi
on

du
e

to
co

nf
ou

nd
in

g
fa

ct
or

s
th

at
ca

nn
ot

be
co

n-
tro

lle
d

fo
r.

Ex
pe

rim
en

ta
l

Si
m

ul
at

io
n

Fl
ig

ht
sim

ul
at

or
:a

co
nt

riv
ed

en
vi

ro
nm

en
tt

o
le

t
pi

lo
ts

tra
in

sp
ec

ifi
ca

lly
pr

og
ra

m
m

ed
sc

en
ar

io
s

to
ev

al
ua

te
th

ei
rb

eh
av

io
ra

nd
de

ci
sio

ns
.R

ea
l-

ism
va

rie
sd

ep
en

di
ng

on
re

so
ur

ce
s.

Re
al

ism
va

rie
sf

ro
m

cl
as

sr
oo

m
to

in
du

str
y

se
t-

tin
gs

de
sig

ne
db

yr
es

ea
rc

he
rs

w
ith

as
pe

ci
fic

se
t

of
ta

sk
so

rs
ce

na
rio

st
ha

tr
ec

ru
ite

d
pa

rti
ci

pa
nt

s
ar

e
as

ke
d

to
pr

oc
es

s.

To
ev

al
ua

te
/m

ea
su

re
be

ha
vi

or
of

pa
rti

ci
pa

nt
so

n
a

se
to

ft
as

ks
in

a
se

tti
ng

th
at

se
ek

s
to

re
se

m
bl

e
a

re
al

w
or

ld
se

tti
ng

.

La
bo

ra
to

ry
Ex

pe
rim

en
t

Cl
ea

nr
oo

m
/t

es
tt

ub
e:

hi
gh

ly
co

nt
ro

lle
d

se
tti

ng
al

lo
w

in
g

a
re

se
ar

ch
er

to
m

ak
e

m
ea

su
re

m
en

ts
w

ith
hi

gh
de

gr
ee

of
pr

ec
isi

on
.

Cl
as

sr
oo

m
or

re
se

ar
ch

la
bo

ra
to

ry
se

tti
ng

sw
ith

a
sp

ec
ifi

c
se

t-u
p

an
d

in
str

um
en

ta
tio

n
to

m
ea

-
su

re
e.

g.
pe

rfo
rm

an
ce

of
al

go
rit

hm
so

rt
oo

ls.

To
m

ak
e

hi
gh

-p
re

ci
sio

n
m

ea
su

re
m

en
ts,

e.
g.

fo
r

co
m

pa
rin

g
di

ffe
re

nt
al

go
rit

hm
sa

nd
to

ol
s.

M
ax

i-
m

um
po

te
nt

ia
lf

or
pr

ec
isi

on
of

m
ea

su
re

m
en

t.
Ju

dg
m

en
t

St
ud

y
Co

ur
tro

om
:n

eu
tra

ls
et

tin
g

to
pr

es
en

te
vi

de
nc

e
/e

xh
ib

its
to

a
ca

re
fu

lly
se

le
ct

ed
pa

ne
l,

as
ki

ng
th

em
fo

ra
re

sp
on

se
(e

.g
.g

ui
lty

).

O
nl

in
e

or
offl

in
e

se
tti

ng
to

so
lic

it
in

pu
tf

ro
m

ca
re

fu
lly

se
le

ct
ed

ex
pe

rts
af

te
rp

re
se

nt
in

g
th

em
w

ith
a

qu
es

tio
n

on
a

to
pi

c
or

an
ex

hi
bi

t(
e.

g.
a

ne
w

to
ol

).

To
ge

ti
np

ut
(‘j

ud
gm

en
t’)

fro
m

ex
pe

rts
on

ag
iv

en
to

pi
c,

w
hi

ch
re

qu
ire

s
in

te
ns

e
sti

m
ul

us
/re

sp
on

se
co

m
m

un
ic

at
io

n.

Sa
m

pl
e

St
ud

y
Re

fe
re

nd
um

:a
pr

oc
es

s
to

co
lle

ct
a

sa
m

pl
e

of
da

ta
to

se
ek

ge
ne

ra
liz

ab
ili

ty
ov

er
th

e
po

pu
la

-
tio

n.
U

nu
sa

bl
e

(in
va

lid
)

da
ta

m
us

tb
e

fil
te

re
d

ou
tb

ef
or

e
an

al
ys

is.

O
nl

in
e

su
rv

ey
sc

on
du

ct
ed

am
on

g
a

po
pu

la
tio

n
of

(ty
pi

ca
lly

)d
ev

el
op

er
s,

or
da

ta
co

lle
ct

ed
fro

m
a

so
ftw

ar
e

re
po

sit
or

y.
D

at
a

m
us

t
be

ch
ec

ke
d

be
fo

re
an

al
ys

is.

To
an

sw
er

ge
ne

ra
liz

ab
ili

ty
qu

es
tio

ns
,i

nc
l.

ch
ar

-
ac

te
riz

at
io

n
of

a
da

ta
se

t,
co

rr
el

at
io

n
stu

di
es

.
M

ax
im

um
po

te
nt

ia
lf

or
ge

ne
ra

liz
ab

ili
ty

ov
er

fin
d-

in
gs

.
Fo

rm
al

Th
eo

ry
Jig

sa
w

pu
zz

le
:a

tte
m

pt
to

m
ak

e
se

ns
e

of
,i

nt
e-

gr
at

e,
or

fit
in

di
ffe

re
nt

pi
ec

es
in

to
a

co
he

re
nt

‘p
ic

tu
re

.’

G
iv

en
a

se
t

of
re

la
te

d
ob

se
rv

at
io

ns
an

d
ev

i-
de

nc
e

re
ga

rd
in

g
a

to
pi

c
of

in
te

re
st,

ai
m

to
fin

d
co

m
m

on
pa

tte
rn

sa
nd

co
di

fy
th

es
e

as
a

th
eo

ry
.

To
pr

ov
id

e
a

fra
m

ew
or

k
th

at
ca

n
de

sc
rib

e,
ex

-
pl

ai
n,

or
pr

ed
ic

tp
he

no
m

en
a

or
ev

en
ts

of
in

te
r-

es
t,

w
hi

le
re

m
ai

ni
ng

co
ns

ist
en

t
(g

en
er

al
iz

ab
le

)
ac

ro
ss

di
ffe

re
nt

ev
en

ts
w

ith
in

so
m

e
bo

un
da

ry
.

Co
m

pu
te

r
Si

m
ul

at
io

n
W

ea
th

er
fo

re
ca

sti
ng

sy
ste

m
:m

od
el

of
th

e
re

al
w

or
ld

is
pr

og
ra

m
m

ed
,c

ap
tu

rin
g

as
m

an
y

pa
-

ra
m

et
er

s
as

po
ss

ib
le

.
Sc

en
ar

io
s

ar
e

ru
n

to
m

ak
e

in
fo

rm
ed

pr
ed

ic
tio

ns
,b

ut
ca

nn
ot

an
tic

i-
pa

te
ev

en
ts

no
tp

ro
gr

am
m

ed
in

th
e

sim
ul

at
io

n.

A
co

m
pu

te
rp

ro
gr

am
th

at
sim

ul
at

es
ar

ea
lw

or
ld

ph
en

om
en

on
,c

ap
tu

rin
g

as
m

an
y

im
po

rta
nt

pa
-

ra
m

et
er

sa
sp

os
sib

le
.P

ro
gr

am
di

ffe
re

nt
sc

en
ar

-
io

s
to

‘r
un

’
to

ex
pl

or
e

ra
ng

es
of

,a
nd

in
te

ra
c-

tio
ns

be
tw

ee
n,

pa
ra

m
et

er
so

fi
nt

er
es

t.

To
de

ve
lo

p
an

un
de

rs
ta

nd
in

g
of

ph
en

om
en

a
an

d
se

tti
ng

st
ha

ta
re

to
o

co
m

pl
ex

or
ex

pe
ns

iv
e

to
cr

e-
at

e
in

th
e

re
al

w
or

ld
.

12 K.-J. Stol and B. Fitzgerald

Fig. 5 Field studies are conducted in pre-existing settings that are not manipulated by a researcher,
to study and observe natural phenomena and actors. Image credits: Public domain. Source:
maxpixel.net (no date)

interviews, document and archival study, or mining repositories—Lethbridge et al.
(2005) have discussed a variety of data collection methods and their trade-offs for
field studies.

Guidelines for Field Studies

• Use the Field Study strategy to study phenomena in their natural setting,
to understand “what’s going on,” or “how things work.” They provide
good opportunities to develop substantive theory. Typical methods include
the exploratory case study, ethnography, and archival study.

• Field studies require a high level of attention and engagement with the
subject and setting. Audio and video recording may help to capture details
for later analysis, but these media may affect the behavior of human actors.

• Success of field studies depend on good access to the relevant people and
artifacts, which can be particularly challenging within corporate settings.
An internal ‘champion’ or maintaining good relationships is key.

• To generalize findings from field studies, use complementary strategies
such as Formal Theory and Sample Studies.

Guidelines for Conducting Software Engineering Research 13

3.2 Field Experiments

Field experiments are also conducted in natural settings, but unlike field studies,
this type of study involves some type of manipulation, thus imposing a greater
degree of control. That is, the researcher introduces some form of experimental
setup by making changes to some variables of interest. After making such changes,
the researcher may observe some effect. If field studies are conducted in a ‘jungle,’
then the setting for a field experiment is more like a nature reserve: a dedicated
area that may be very similar to a jungle, but the researcher can introduce specific
changes to study different aspects within the reserve. Figure 6 shows a jungle with
specific patches of trees cut down; the purpose of this study was to study the effects
of different types of forest fragmentation on wind dynamics and seed dispersal
(Damschen et al. 2014).

It is important to remember that field experiments take place in natural settings,
which should be clearly distinguished from contrived settings that provide the
setting for experimental simulations and laboratory experiments, discussed later.

A range of methods are available to conduct field experiments. These are not
limited to the traditional controlled experiment that separates a population of actors
into two or more different groups so as to make comparisons. Experimentation
also occurs when a researcher adopts the Action Research method; with Action
Research, a researcher follows a recurring cycle of making changes and evaluating
the results of those changes. While not a randomized controlled experiment, Action
Research can still be considered a form of experimentation.

Ebert et al. (2001) conducted a field experiment to investigate three factors that
might impact the cost of rework in distributed software development: (1) the effect

Site, SC (Fig. 1) comprising 1.375 ha connected and unconnected
open-habitat longleaf pine savanna patches surrounded by
mature pine plantation. “Connected” patches test for connectivity
effects whereas unconnected “rectangular” and “winged” patches
test for patch area and shape effects, respectively (Materials and
Methods). Longleaf pine savanna supports some of the most di-
verse plant communities in the world (22, 23) and is typified in
part by a large proportion of wind-dispersed plant species (22).
At our study site, for example, wind-dispersed species constitute
the most common plant dispersal mode.
To understand how connectivity and habitat fragmentation

affect wind and seed dispersal dynamics, we applied and tested
a mechanistic model of wind-driven dispersal in our experi-
mental landscape. We used the Regional Atmospheric Modeling
System-based Forest Large Eddy Simulation model (RAFLES;
see Materials and Methods, ref. 24, and Fig. S1), a mechanistic
model that explicitly incorporates 3D heterogeneous habitat
structure at meter-scale resolution. We tested the model’s pre-
dictions by empirically measuring wind dynamics and LDD
patterns of experimentally released artificial seeds in our highly
controlled landscape. We also tested the predicted implica-
tions of these model results for plant community dynamics by
evaluating changes in species richness of wind-dispersed plants
among our experimental patch types across 12 y of community
development.

Results
The model predicts that, in general, wind speeds accelerate in
habitat openings relative to the surrounding closed forest, causing
increased turbulence and uplift probabilities (Fig. 2; Figs. S2–S4).
It also illuminates three distinct effects of habitat openings on
wind dynamics (Fig. 2)––redirecting, bellowing, and ejection
hotspots (these terms are described below). All of these effects
are affected by corridors and the shapes of patches, altering seed
dispersal patterns (Fig. 3 A and B).
First, wind direction in all patches rotates toward the long axis

of each patch, in line with the corridor or wings. This “redirecting”
effect causes wind to converge into the corridor or wing when

either is located on the downwind side of a patch [e.g., Fig. 2A:
wind blows directly along the long axes of the patches (eastward)
even though the above-canopy wind forcing was at 30° toward the
southeast, an effect that can begin even in the forested matrix
before the wind reaches the patches; Materials and Methods].
The spatial extent of this effect is longest in connected patches,
intermediate in winged patches, and shortest in rectangular
patches (Fig. 2A), suggesting that seeds are moved farthest
among connected patches, intermediate distances in winged
patches, and least in rectangular patches. The redirection effect
is strongest close to the ground, affects the wind direction in the
matrix near patches, and is weaker above the canopy.
Second, a “bellowing” effect occurs when winds accelerate

inside a patch, leading to relatively strong winds at the downwind
end of corridors and wings (e.g., arrows in Fig. 2A). The stron-
gest enhancement of wind speed is at the center of wings and
corridors because wind in the patches experiences less drag rel-
ative to wind at the same height in the surrounding forest matrix
due to the lack of tree-canopy obstacles (25). Although the
bellowing effect occurs in both winged and connected patches, it
only promotes between-patch movement for connected patches
(Fig. 2A).
Third, increased “ejection hotspots”––locations in which seeds

have a relatively high probability of being uplifted (sensuref. 11)––
are more likely to occur in connected than unconnected patches
(Fig. 2B: upward arrows around the centers of connected patches
at ∼40 m and ∼300 m downwind are much stronger than those in
the centers of winged and rectangular patches at ∼140 m down-
wind). Ejection hotspots occur when increased turbulence, and
particularly increased variation of the vertical component of wind
speed, results in increased updrafts and downdrafts such that the
former leads to an increased probability of seeds being trans-
ported long distances (9–11). This effect, in combination with the
redirection and bellowing effects, makes it more likely that seeds
will move among connected than unconnected patches and that
corridors will promote LDD of wind-dispersed seeds among open-
habitat patches.
Empirically determined wind dynamics and seed dispersal pat-

terns in our experimental landscapes (Materials and Methods) pro-
vide evidence consistent with these model predictions. Across
a dispersal season, corridors increased wind speeds and rotated the
wind direction to be in line with the long axis of the patch, in the
same direction as the corridors and wings (Fig. 3C). Wind data
collected simultaneously in a corridor and reference patch (rect-
angular patch) across two years (blue dots, Fig. 3D) show that wind
directions consistently rotate to be in line with the corridor (Fig. 3D;
red horizontal lines show corridor orientation shown in Fig. 1).
Experimental releases of 5,400 artificial seeds (with a terminal ve-
locity similar to native wind-dispersed species; Materials and Meth-
ods) corroborate these results. In five separate release events, 300
seeds were simultaneously released under the same overall mete-
orological conditions from different locations within our land-
scapes (Table S1). A greater proportion of seeds dispersed in
the same direction as the corridor when released near the cor-
ridor entrance than when released elsewhere (Fig. 3 A and B). In
the winged patch with high edge-to-area ratios, but no connec-
tion to other patches, similar increases in wind speeds and re-
direction were also observed but to a lesser degree than in the
corridor of connected patches (Fig. 3C).
Overall, modeled and observed dispersal kernels from all release

locations were significantly correlated (Materials and Methods,
r2 = 0.50–0.94, the slopes of modeled vs. observed data were not
significantly different from 1, Table S1 and Fig. S5), suggesting
that the model captures the underlying wind and seed dispersal
processes in our study landscape and provides reasonable pre-
dictions for seed dispersal patterns.
Our modeled and empirical results show that empirically de-

termined LDD is indeed greatest among connected patches,

Connected
patch

Unconnected
rectangle patch

Unconnected
winged patch

Unconnected
winged patch

Corridor
90°270°

Wing

Fig. 1. Experimental landscape at Savannah River Site, SC. Patch types are
connected (with a corridor), unconnected winged, or unconnected rectan-
gular. The long axis of the corridor is aligned along 90° and 270° to corre-
spond with Figs. 2 and 3.

Damschen et al. PNAS | March 4, 2014 | vol. 111 | no. 9 | 3485

EC
O
LO

G
Y

Fig. 6 Field experiments
involve the manipulation of an
otherwise pre-existing natural
setting to facilitate observation
and measurement in order to
collect data. Image source:
Damschen et al. (2014), used
with permission.

14 K.-J. Stol and B. Fitzgerald

of co-location on the efficiency and effectiveness of defect detection; (2) the effect
of coaching on software quality, and (3) the effect of changes to the development
process on teamwork, and continuous build on management of distributed project.
To evaluate these effects, Ebert et al. used project data that the company had
gathered for several years.

Despite careful measurement of a range of parameters, certain factors are hard
to measure, such as ‘culture.’ Ebert et al. divided the projects into different sets,
e.g., “within one culture (i.e. Europe).” While we can certainly generalize that
there are common attributes across different European cultures, there is no single
Europe culture—each European culture is quite distinct, with significant changes
even between neighboring countries such as Ireland and the UK, or the Netherlands
and Germany. Furthermore, each of the projects in the data set used by Ebert et
al. will undoubtedly have had specific obstacles, such as particularly challenging
technology or changing requirements, and strengths such as particularly talented
staff. These factors are very hard, if not impossible to capture, reducing the precision
of measurement.

Guidelines for Field Experiments

• Use the field experiment strategy to evaluate the effects of manipulations
within realistic settings.

• Field experiments require a high degree of prior investment in design and
execution of data collection, typically in corporate settings.

• Contextual factors must be recorded carefully, so that they can be consid-
ered in the analysis.

• Use Formal Theory or Sample Studies to seek a higher degree of generaliz-
ability. Computer simulations can be used to model a complex real-world
system to explore key parameters and their interactions, when a field
experiment would be too costly.

3.3 Experimental Simulations

Experimental simulations combine some elements of the field experiment strat-
egy and laboratory experiments (discussed below). A key difference with field
experiments is that experimental simulations take place in contrived settings. That
is, the research environment is artificial and is purposely designed to conduct
the study—before and beyond the study, it does not exist. While this makes the
experimental simulation less realistic, it also gives the researcher opportunities to
make more precise measurements and observations, because participants can be
asked to do specifically designed tasks that may not be part of their daily routine.
This increases the level of control even further with respect to field experiments.

Guidelines for Conducting Software Engineering Research 15

Fig. 7 Flight simulators are experimental simulations that facilitate training and study of the
behavior of pilots in pre-programmed scenarios. Image credits: SuperJet International, distributed
under CC BY-SA 2.0 Source: SuperJet International (2011)

While we compared the field experiment to a nature reserve, the experimental
simulation is more akin to a greenhouse, which mimics a warmer climate. The
researcher is still interested in natural processes (e.g. how do flora flourish), but the
setting in which that process is observed is artificially created for that purpose.

The greenhouse metaphor links well to the jungle and nature reserve metaphors,
but another useful metaphor for the experimental simulation is a flight simulator
(see Fig. 7). Within the flight simulator, specific events can be introduced, such
as heavy storms and rainfall. Pilots in training would be asked to perform as they
would in a real aircraft, but the research setting is considerably easier and cheaper
to plan.

The level of realism that is achieved in experimental simulations can vary
considerably, just like flight simulators. The latter can vary from low-cost set-ups
consisting of a standard PC, a budget flight yoke and rudder pedals, to high-end,
full motion flight simulators used by professional pilots that might cost millions of
dollars. The tasks that participants are asked to perform in experimental simulation
may also vary in realism. While such tasks are part of normal daily life of the
participants in field experiments, in experimental simulations participants are
recruited and invited to perform certain tasks designed by the researcher. The
process that the researcher wishes to study is simulated, facilitating systematic
measurement and comparison. The level of realism of the task can be very high,
such as debugging a program within a professional setting (Jiang et al. 2017), or it

16 K.-J. Stol and B. Fitzgerald

can be as contrived as producing and trading colored shapes, such as blue squares
and red circles (Bos et al. 2004).

Jiang et al. (2017) conducted an experimental simulation to investigate whether
developers conduct impact analysis during debugging. Their contrived setting con-
sisted of a specifically set up work station, equipped with the SimpleScreenRecorder
recording software. Videos were captured of nine professional developers who had
been given two bug reports. The bug reports had been identified by the researchers
in two specific applications (PdfSam and Raptor), and were selected because these
bugs had already been fixed at the time of the study. While the task at hand and the
study setting were contrived (designed by the researchers), both were quite realistic.
However, the realism of the study was reduced as the researchers set a time limit
for some of the participants, and offered a suggested fix to the defects.

In contrast, Bos et al. (2004) focused on collaboration between co-located and
distributed individuals, and the task at hand was simply a mechanism to engage
participants. The focus of the study was therefore on the emergent behavior of the
participants, rather than how a specific task was performed as was the case for
the Jiang et al. study described above. Therefore, to ensure that the participants
understood the task at hand, and to minimize any distraction that might ensue from
introducing complex tasks, the researchers chose to design trivial tasks.

Guidelines for Experimental Simulations

• Use experimental simulations to find an appropriate balance between
measuring emergent behavior and achieving realism.

• Choose an appropriate level of realism of the research setting, balancing
between cost and effort of setting up the research setting and the need for
realism.

• If the research focus is on participant behavior that is not dependent on a
specific type of task, then minimize the complexity of the task.

• If the research focus is on the behavior in relation to a specific type of
task, then the task should exhibit a high level of realism.

3.4 Laboratory Experiments

The laboratory experiment is a strategy that offers maximum opportunity to control
the research setting. Like experimental simulations, laboratory experiments take
place in contrived settings that are created by the researcher. Laboratory experiments
involve a careful manipulation or initialization of variables and settings that give
the researcher the maximum opportunity to take precise measurements of actors’
behavior, whether these are human participants or software systems.

Guidelines for Conducting Software Engineering Research 17

Fig. 8 Laboratory experiments are conducted in settings contrived by the researcher to allow for
a maximum level of precision of measurement. Image credits: Public domain. Source: Tyndall
(1896)

If the experimental simulation is akin to a greenhouse, then we can compare the
laboratory experiment to a test tube or cleanroom (see Fig. 8). Both a greenhouse
and a test tube provide a contrived setting, but the difference lies in the compromise
that the researcher makes between the level of control over the setting on the one
hand, and the level of realism on the other hand.

Laboratory experiments can be conducted with human participants or with
programmed ‘actors’: algorithms, prototype tools, etc. A laboratory experiment
with human participants usually involves a treatment and a control group, and the
researcher aims to measure with a high degree of precision to observe any differences.
A good example of this is a study by Niknafs and Berry (2017), who investigated
the impact of domain knowledge on the effectiveness of requirements engineering
activities. Niknafs and Berry conducted two controlled experiments involving a
total of 40 teams of three members each. The participants were all technological
students (computer science, software engineering, and other technical areas). Their
article offers a detailed presentation of the experimental setup, procedures, and
variables that they measured.

Programmed actors are systems running specific algorithms or other software
applications that are experimentally evaluated. This approach is extremely common
in software engineering research studies, because a significant portion of SE studies

18 K.-J. Stol and B. Fitzgerald

offer new solutions in the form of new algorithms and tools which are subsequently
evaluated (Stol and Fitzgerald 2018).

It is worth noting that many software engineering papers characterize the
laboratory experiments they report as “real-world case studies,” but this is a
misrepresentation. The mere fact that a realistic system or operational data is used
does not mean that such studies exhibit a higher degree of realism—such studies are
still laboratory experiments, not field experiments or field studies. While there is
clearly value in engaging with industry partners to access their data or source code
for an experimental study, we observe that such studies are often misrepresented,
presumably to convince the reader of the relevance and rigor of the work.

An example of a laboratory experiment using programmed actors is Li et al.
(2017)’s evaluation of search algorithms. Li et al. proposed a new fitness function
to address an optimization problem, and evaluated the newly proposed algorithm
with commonly used search algorithms. Li et al. offer a detailed description of
the experimental setup and the statistical analyses that were conducted on the
collected data. This study clearly took place in a setting specifically contrived,
aiming to maximize the precision of measurement so as to be able to conclude
which algorithm performed best. Such comparative studies are very common in
software engineering, and are sometimes referred as benchmarking studies (Sim
et al. 2003).

Guidelines for Laboratory Experiments

• Use laboratory experiments to achieve a high level of precision in measur-
ing variables.

• Laboratory experiments may involve either students or professionals; the
use of professionals does not make a study a field experiment per se.

• Laboratory experiments may involve the use of data or systems that come
from natural settings, but this does not make such studies field experiments.

• To address the limitation of a lack of realism, laboratory experiments can
be complemented with experimental simulations and field experiments.

3.5 Judgment Studies

Judgment studies are positioned next to the laboratory experiment. The latter allow
maximum precision of measurement in a research setting that is fully under the
control of the researcher, who plans and introduces stimuli into the research setting.
Judgment studies also involve stimuli introduced by the researcher, but rather than
observing or measuring behavior, the researcher is interested in the responses of
the participants. Judgment studies take place in neutralized settings—the researcher
does not need a contrived setting, but can conduct the study in any setting that

Guidelines for Conducting Software Engineering Research 19

Fig. 9 Judgment studies are usually conducted in neutral settings so that participants can focus
on the study—much like how a case is presented in a courtroom. Image credits: Fayerollinson CC
BY-SA 3.0, Source: Fayerollinson (2010)

is available. The primary consideration is that participants are not distracted. For
example, if a judgment study takes place in settings that make the participants
uncomfortable due to factors such as temperature or noise, then this may inhibit
completion of the study. Hence, the researcher may actively seek to neutralize the
setting—much like a courtroom (see Fig. 9). Rather than manipulating the study
setting, the researcher conducts the study by carefully and systematically selecting
appropriate participants (or ‘judges’).

Judgment studies commonly include Delphi studies and focus group studies.
These methods involve systematic and purposively selected experts whom the
researcher deems to be suitable for the study. These studies usually do not involve
a large number of participants—that is, judgment studies do not seek statistical
generalizability over the population of which the experts are representatives, but
rather generalizability over the experts’ responses (McGrath 1984).

One example of a judgment study is Krafft’s (2016) Delphi study that investigated
how open source developers pick their tools, when they contribute to a large project
and thus where tools must be compatible. Krafft’s study involved a systematic
selection of 24 experts within the Debian open source community, which were
asked for their input in three different rounds. Each round, the data were analyzed,
aggregated, and sent back to the panel to solicit further input. The setting of
this study was not important; in fact, the study was conducted mostly via email
interaction, and so the experts were simply based in the comfort of their own home
or office space. Rather than generalizing over the population of OSS developers,
Krafft sought to develop a generalizable answer to his question, namely, how do
Debian developers select their tools.

20 K.-J. Stol and B. Fitzgerald

There are of course studies that seek generalizability over a population. These
are sample studies, and we discuss them next.

Guidelines for Judgment Studies

• Judgment studies represent a compromise between a sample study (gener-
alizability) and a laboratory experiment (precision of measurement): use
judgment studies to seek generalizability over participants’ responses, not
the participants themselves.

• Judgment studies rely on a systematic sampling rather than representative
sampling; careful selection of experts is essential.

• Findings from a judgment study can be evaluated through large-scale
sample studies, or categories of observed behavior or responses can be
further studied in realistic settings through field studies.

3.6 Sample Studies

Sample studies involve the collection of data from a population, whether that
population consists of human actors or of system artifacts. Surveys are useful to
seek generalizability over a population by studying a sample of that population. For
example, researchers who wish to learn more about open source software developers
could conduct a sample study among developers active on public GitHub projects.
Sample studies are also discussed in chapter “Challenges in Survey Research” of
this book.

Like judgment studies, sample studies do not depend on a specific research
setting that is set up by a researcher. The setting plays no role in the research; no
specific setting is required to conduct sample studies.

We compare a sample study to a referendum or election (see Fig. 10), with the
goal of collecting a relatively small number of data points from a large number
of actors. We use the abstract term ‘actor’ here, because actors may be human
participants (as in a referendum), but sample studies are also widely used in SE
research by collecting data from software repositories. In sample studies that collect
data from human respondents, a critical issue is whether or not a sufficiently large
sample can be collected, because response rates tend to be limited. Rates of less
than 30% are not unusual, and this can make survey research quite challenging.
(We note that it is not possible to calculate a response rate if the size of the target
group is unknown).

Sample studies have high potential to achieve generalizability of findings to a
larger population of actors, whether they be software developers or software system
artifacts such as bug reports. However, sample studies are inherently limited in
that they offer limited precision in measuring behavior, either human or system

Guidelines for Conducting Software Engineering Research 21

Fig. 10 Sample studies with human participants are like referendums or elections; the amount
of information gathered per participant is limited, and achieving a good response rate can be
challenging if the population has low interest. Image credits: Australian Electoral Commission,
distributed under CC BY 3.0. Source: Australian Electoral Commission (2016)

behavior. The reason for this limitation is that the researcher collects whatever
data he or she can get. For example, even a carefully designed survey instrument
aimed at collecting data from software professionals may still be misinterpreted
by respondents, or respondents may accidentally or deliberately skip questions.
The researcher’s control over this is limited. When collecting data from a software
repository, the researcher can only gather the data that is stored, which is not always
what the researcher would like to have. Furthermore, data in software repositories
may not be consistent or correct. Indeed, many studies have investigated events on
the popular GitHub.com development platform, but mining that repository is not
free from perils (Kalliamvakou et al. 2016). In some cases, database tables and
fields may be ambiguously named and labeled, leading to misinterpretations by the
researcher relying on the data for analysis.

Sample studies are among the most common studies in software engineering
(Stol and Fitzgerald 2018), though the type of data analysis can vary widely.
Quantitative data analysis types vary from descriptive to inferential (Russo and
Stol 2019). Storey et al. (2017)’s sample study of GitHub developers sought to
understand developers’ use of communication channels, and used a descriptive
analysis. An example of a sample study using inferential analysis is Sharma and Stol
(2020)’s study of onboarding of software professionals that sought to understand
what makes for a successful onboarding experience of new hires.

An example of a sample study of software development artifacts is Stol et al.
(2017)’s analysis of crowdsourcing contests. This study investigated the potential

22 K.-J. Stol and B. Fitzgerald

influence of a number of factors on the interest and participation of members of the
crowd in contests, based on a sample of over 13,000 crowdsourcing contests on the
Topcoder platform.

Guidelines for Sample Studies

• Use sample studies to achieve maximum generalizability over a population,
whether that is a population of human actors (e.g. software developers,
managers), or software actors or artifacts (e.g. bugs and bug fixes, apps,
projects).

• The number of data points per subject is usually limited, and so the
questions must be carefully selected.

• As there is often no direct contact between the researcher and human
respondents, questions must be unambiguous.

• When relying on archival data from software repositories, the data comes
‘as-is’; sanity checks must be conducted to ensure consistency.

• Generalizability is limited by the sample that is studied.

3.7 Formal Theory

Formal theory is a strategy that aims to seek generalizability, not through empirical
methods, but rather through the specification of symbolic representations of variables
and constructs (Runkel and McGrath 1972). Therefore, formal theory takes place
in a non-empirical setting. Formal theory development typically involves extensive
reviews of prior research in order to identify, distill and codify recurring patterns.
Thinking in terms of abstractions and aiming to identify theoretical relationships
is one of the most important activities in research. However, the amount of prior
research may be quite scarce, and indeed, theories can be proposed on little more
than a rich imagination and mental models that develop over time. The importance
of theory development is illustrated by Nisbett (2005, p. 4), who described how
the early Mesopotamian and Egyptian civilizations made systematic (empirical)
observations, but only the Greeks made significant progress by explaining their
observations in terms of the principles underpinning them—that is, by reasoning
what might link or cause those observations.

A major role of theory is to inform future research, as it motivates further studies
to evaluate hypothesized relationships—this is true both for the Periodic Table of
Elements and for Einstein’s Theory of Relativity. Both theories allowed predictions
to be made which could only be empirically verified many decades later.

The process of formal theory is like making a jigsaw puzzle (see Fig. 11). When
you first open up the box, there may be many pieces, and it may not be readily

Guidelines for Conducting Software Engineering Research 23

Fig. 11 Formal theory can be similar to making a jigsaw puzzle: lots of pieces, and a challenge to
put it all together in a coherent way. Image credits: public domain.

clear as to how they all fit together.1 This is the case in many areas of software
engineering: much empirical research exists, but the field lacks theories that can
explain and integrate these individual studies. Of course, theories may also be
developed without much initial empirical evidence. Einstein’s proposed theory
of relativity was not grounded in any empirical observations, but rather through
“sheer genius, fully formed from the mind of the theorist” (Hassan 2015). Empirical
evidence for Einstein’s theory has been gathered since.

Both the Theory of Relativity and the Periodic Table of Elements are “general”
or “grand” theories, as they are “all embracing, unified theories” that are relatively
unbounded (Hassan 2015). Formal theory may refer to grand theory, but may also
refer to middle range theories—those that are more limited in scope and context
(Bourgeois 1979).

It is worth clarifying how Grounded Theory (GT) relates to formal theory as
a research strategy. GT is an approach by which the researcher makes empirical
observations, typically through field studies, and in parallel generates theory that
is grounded in those observations. Barney Glaser, one of the two creators of GT
together with Anselm Strauss (Glaser and Strauss 1967), explicitly refers to such
theory as “substantive theory” distinguishing it from “formal grounded theory”
(Glaser 1978). Glaser (1978, p. 52) describes the difference between substantive
and formal grounded theory as:

The former is about a specific area e.g., route milkmen, the latter about a concept in its full
generality: e.g. cultivating.

1 This is also the point where the jigsaw puzzle metaphor breaks down, as jigsaw puzzles tend to
come in a box with the solution printed on the cover—researchers do not have such luxury.

24 K.-J. Stol and B. Fitzgerald

Thus, the distinction that Glaser draws here is that substantive theory explains
some specific phenomenon (e.g. a milkman cultivating relationships with his
customers), while formal theory is at a higher level of abstraction (e.g. the act of
cultivating relationships in any type of setting).

Formal theory is positioned on the left-hand side of the ABC framework, because
it refers to those theories that have a sufficient degree of generalizability and are
not intrinsically linked to any substantive domain. Using the example above, a
substantive theory of a milkman cultivating relationships with his customers would
not exhibit sufficient generalizability, while a formal grounded theory explaining
the general act of cultivating relationships would do so.

In software engineering, much “theory” is what we have termed “micro-theories”
(Stol et al. 2016a)—and what Merton would call “the minor but necessary working
hypotheses that evolve in abundance during day-to-day research (Merton 1968, p.
39). Other forms of theory can also be observed, such as theoretical frameworks,
models, or other types of conceptualizations (Stol and Fitzgerald 2015). The
traditional forms of theories found in the social sciences (variance, process theory)
are less common in software engineering research, though this has started to change
in recent years. While ‘formal theory’ (i.e. general theory) by Glaser’s description is
not common in software engineering, we believe generalizable conceptualizations
should still be an ambition of the community.

One example of what we would classify as formal theory is Ralph’s theory of
Sensemaking, Coevolution, and Implementation (SCI) (Ralph 2015). SCI seeks to
“replace lifecycle depictions of the development process” because the latter suggest
software design as a linear sequence of phases and label these phases as mutually
exclusive activities. SCI offers a new perspective that researchers and educators
may adopt to study and teach software development processes.

Arguably another form of substantive theory is design artifacts that are the result
of the Design Science paradigm. Such products are also “vehicles” of knowledge.
Runeson et al. discuss the Design Science paradigm in software engineering
research in chapter “The Design Science Paradigm as a Frame for Empirical
Software Engineering” of this book.

Guidelines for Formal Theory

• Develop formal theory when an area of interest attracts a high number of
empirical studies without an overall framework to integrate the findings.

• Formal theory is also a useful starting point before conducting any
empirical studies as it helps to focus and identify important research
questions or hypotheses, or to predict observations (e.g. the Periodic Table
of Elements).

• Formal theory can be developed based on previous empirical observations
(for example through field studies), substantive theory (identified through
for example literature reviews) and computer simulations.

Guidelines for Conducting Software Engineering Research 25

3.8 Computer Simulations

A computer simulation is a fully closed system that implements a concrete theoretical
model. One type of computer simulation that people living in rainy climates can
appreciate is weather forecasting systems (see Fig. 12). Predicting the weather is
done by means of highly complex computer models that are carefully configured and
calibrated using a wide range of parameters. By considering a series of scenarios,
the most likely scenario will then be the basis for any forecasts. These weather
forecasting systems are completely closed, in that all parameters and equations
are fully programmed. The values of these parameters may be based on values
empirically observed through a range of sensors throughout the country, but once
these are entered into the simulation, there is no further interaction with the outside
world—computer simulations do not make any new empirical observations. Or,
as McGrath stated succinctly: “no new behavior transpires during the run of
the simulation” (McGrath 1995, p. 159). This is one key characteristic that sets
computer simulations apart from experimental simulations.

Fig. 12 Computer simulations are like weather forecasting systems. Computer models take
empirical observations and a set of complex mathematical models to run scenarios. The result is a
forecast: information, but not empirically gained, and may be imprecise. Image credits: public
domain

26 K.-J. Stol and B. Fitzgerald

Because computer simulations do not make any empirical observations, the
results from a simulation should be treated with care. Any predictions or results
coming from a computer simulation might be wrong—while weather forecasting
computers can make impressively precise predictions, occasionally they are still
wrong. This is because computer simulations are based on models of reality, not
reality itself.

A good example of the use of computer simulations is a study to evaluate
task allocation strategies in distributed software development (Setamanit 2007;
Setamanit et al. 2007). Software development tasks in distributed settings can
be allocated following three strategies: Follow-the-Sun (FTS), phase-based, and
module-based. Using FTS, one team may finish the workday, as another team
located elsewhere may start the workday. The work continues potentially 24/7,
depending on the number of teams and the time differences between them. Phase-
based development means that each team takes responsibility for a particular
phase of the development lifecycle. Module-based development implies that each
development team has end-to-end responsibility for a given software module. By
running a number of scenarios with computer simulations, Setamanit et al. found
that by neutralizing any communication and cultural barriers, the FTS strategy
led to a development cycle that was 70% shorter than a single-site development
scenario. However, when these communication and cultural factors were introduced
into the model, the FTS strategy performed considerably worse than single-site
development.

It is important to realize that the scenarios are modeled based on formulas
and assumptions, and that the outcome of these computer simulations may not
correspond to reality. Chapter “The Role of Simulation-Based Studies in Software
Engineering Research” of this book discusses computer simulations in more detail.

Guidelines for Computer Simulations

• Use computer simulations to create a model of real-world systems or
phenomena that cannot be easily or affordably set-up in real life.

• Identify and model all parameters of interest, and which have relevance as
suggested by prior literature.

• Be cautious in interpreting the results of computer simulations as they are
necessarily simplified models of reality. It is important to remember that
computer simulations do not generate empirical observations.

• Conduct empirical studies to confirm or disconfirm the results of computer
simulations.

Guidelines for Conducting Software Engineering Research 27

4 Applying the ABC Framework

Research studies are rarely conducted in isolation, but usually as part of a research
program that seeks to investigate a phenomenon. This is true for PhD dissertations,
but also for funded research programmes, such as those funded by the US National
Science Foundation (NSF), the European Committee’s funding programmes such
as Horizon 2020 and its follow-up Horizon Europe, or other funding programmes.
In order to study a phenomenon, it is useful to employ different research strategies—
each strategy has potential strengths and inherent limitations, and by using different
strategies to study the same topic, researchers can address such inherent limitations,
and ultimately learn more about the topic of study. In our previous work, we
discussed two scenarios (Stol and Fitzgerald 2018). To complement those, we
discuss a recent research programme that we were both involved in.

In Fig. 13 we present the positioning of strategies used by Dr. Ann Barcomb’s
PhD dissertation, which we co-supervised (together with Prof. Dirk Riehle at the
Friedrich-Alexander University Erlangen-Nürnberg) (Barcomb 2019). Ann’s disser-
tation, entitled “Retaining and Managing Episodic Contributors in Free/Libre/Open
Source Software Communities” (Barcomb et al. 2019a), focused on episodic volun-
teers: those volunteers that may contribute intermittently.

The dissertation was designed as a set of three empirical studies. The first study
was a qualitative survey that sought to document what episodic volunteering looks
like in an open source software setting (Barcomb et al. 2019a). The study involved
interviews with members of 13 different open source communities. The choice
of an exploratory survey is interesting. While the field study strategy seems a
straightforward choice for topics that have not been studied in great detail, this

A
C

B

Sample Study (quant.)
Barcomb et al. 2019b

Judgment Study
Barcomb et al. 2020

Sample Study (qual.)
Barcomb et al. 2019a

Fig. 13 Three studies of Ann Barcomb’s PhD dissertation: two sample studies and one judgment
study.

28 K.-J. Stol and B. Fitzgerald

study sought a higher degree of generalizability to achieve the research goal. If only
a single OSS project had been studied, for example by means of a case study or
ethnographic study, the findings would have been rather limited: we would have
learned in great detail, and enriched with great contextual detail how episodic
volunteers behave or operate in one project, but this would not have answered the
question “what does episodic volunteering look like in OSS projects?” Thus, a
qualitative survey was deemed a more useful approach.

The second study drew on the general literature on volunteering and episodic
volunteers (Barcomb et al. 2019b). Specifically, other researchers had developed
a theoretical model that sought to explain reasons why episodic volunteers might
return. Ann’s second study therefore sought to test this theoretical model in the
context of OSS episodic volunteers. This study consisted of a survey instrument
implemented with SurveyMonkey; 101 usable responses analyzed using PLS
structural equation modeling.

Having established (1) what episodic volunteering looks like in an OSS setting,
(2) what reasons might help to retain episodic volunteers in OSS communities,
Ann’s next focus was on managing those episodic volunteers. Hence, the third
study sought to identify practices that OSS community managers believe are useful
to do so (Barcomb et al. 2020). Through a Delphi study, Ann carefully selected
24 community managers from a variety of communities, and engaged them in
three rounds of interaction (through email). The Delphi study is categorized as a
Judgment Study: each of the panel members was asked to provide detailed responses
to a set of carefully crafted questions. In each of the three rounds, responses were
analyzed, anonymized, and collated. At the end of the three rounds, the analysis
resulted in a set of practices, based on community experts’ input, for managing
episodic volunteers.

Together, these three studies add considerable insight to this nascent area within
the larger OSS literature. The selected research strategies are all positioned on
the left-hand side of the ABC framework (see Fig. 13), but still vary in certain
aspects. While Ann conducted two sample studies, one was of qualitative nature,
whereas the other was quantitative. The third study is a judgment study, which
provides a higher degree of control of the conversation—indeed, the Delphi method
facilitates interaction in several rounds, providing researchers an opportunity to
clarify answers when needed; such flexibility was not available in the quantitative
sample study.

It is interesting to reflect on the design of this research programme (Table 2).
The programme did not involve any experimentation, nor did it involve any field
studies. While one of the studies involved face-to-face interviews, the setting in
which these took place was of no importance—the goal was not to focus on the
context of a specific volunteer in a specific project. Arguably this is one limitation
of the research programme, which could be addressed in the future by conducting a
case study or ethnographic study of episodic volunteers in a specific project. This
could potentially lead to rich insights as to the reasoning process on a day-to-day
basis of episodic volunteers whether or not to contribute or return to the project
they have been involved in before.

Guidelines for Conducting Software Engineering Research 29

Table 2 Summary of the three studies in Barcomb’s dissertation

Study Strategy Description Limitations

1 Sample study Qualitative survey involving inter-
views with 20 informants from 13
OSS communities selected based
on variety across two dimensions.

Captures a range of perspectives
on episodic volunteering in OSS
communities, but does not estab-
lish any causal relationships or
any specific context.

2 Sample study Cross-sectional, quantitative sur-
vey with 101 responses to evalu-
ate a theoretical model.

Seeks generalizability, but does
not capture any causal relation-
ships or any specific context.

3 Judgment study Delphi study involving a panel
of 24 experts; documents a set
of practices to manage episodic
volunteers.

Offers a trade-off between gener-
alizability and precision of mea-
surement; does not capture any
specific context.

5 Recommended Further Reading

This chapter provides a high level framework to help researchers in their selection
of an appropriate knowledge-seeking research strategy. What this chapter does not
offer is detailed guidance for each and every specific method and technique that
can be positioned within the framework. References to a wide range of excellent
resources are provided in a previous article (Stol and Fitzgerald 2018). In this
section we list a number of recommended sources organized by theme or research
strategy.

5.1 Empirical Studies in Software Engineering

Numerous sources discuss general matters regarding empirical studies which we
cannot list all. We suggest the following as a starting point.

Glass et al. (2002) were among the first to reflect on the research methods
used within the software engineering research community through an extensive
literature review, and observed little variation in research approach and methods
methodological. Much has changed in the two decades that have passed. Kitchenham
has written extensively on empirical software engineering since the late nineties.
She and her co-authors have primarily focused on quantitative methods, including
survey research (Kitchenham and Pfleeger 2002) and experimentation (Kitchenham
et al. 2002). In 2004, Kitchenham et al. (2004) published a seminal paper arguing
for evidence-based software engineering, which borrows from the concept of
evidence-based medicine, arguing that software engineering practice should be
informed by evidence. A key source for many has been Easterbrook et al. (2008)’s
guidelines for selecting empirical methods, which provides an overview of several

30 K.-J. Stol and B. Fitzgerald

widely used methods as well as a brief discussion of epistemology within software
engineering. In the decade since, several other works have discussed the maturity
of empirical software engineering—a recent article by Méndez Fernández and
Passoth (2019) discusses the increasing focus on human-centric challenges and the
need to establish interdisciplinary collaborations.

5.2 Field Studies

Numerous research methods fall within the scope of the field study strategy. Most
common among those is the descriptive or exploratory case study. A widely cited
resource is Yin (2014)’s book. Runeson et al. (2012) have tailored guidance for case
studies to the software engineering domain. Lethbridge et al. (2005) have presented
a taxonomy of data collection techniques for field studies, whereas Seaman (1999)
presented a seminal paper on the use of qualitative methods, which are typically
used in field studies. Besides the case study method, two other methods warrant
brief discussion. The first is Grounded Theory, a method originally proposed by
Glaser and Strauss (1967), and which has since seen more specific interpretations
(Stol et al. 2016b). Grounded Theory studies have become common in software
engineering, though in many cases the term has been misused (Stol et al. 2016b).
We note that Grounded Theory studies do not always focus on one specific research
setting, but could also be used, for example, to investigate a range of different
companies (cf. Hoda et al. (2013)). Another method within the strategy of field
studies is the ethnography; Sharp et al. (2016) have discussed its role within the
software engineering domain.

5.3 Experimental Studies

There are numerous sources that provide advice for experimental studies. Besides
Kitchenham et al. (2002)’s preliminary guidelines, we suggest interested readers
consult Wohlin et al. (2012)’s discussion of experimentation in software engineering
as well as Juristo and Moreno (2001)’s book on the same topic.

5.4 Judgment Studies and Sample Studies

Judgment studies, sometimes referred to as user studies, can be a useful way to
evaluate a tool or get insights from a carefully selected set of experts. Focus group
studies and Delphi studies are also methods that fit clearly within this strategy.
The Delphi method has been well documented by Dalkey and Helmer (1963) and
Linstone and Turoff (2002). Kontio et al. (2008) offer guidance for focus group

Guidelines for Conducting Software Engineering Research 31

studies. Another method that fits well within this strategy is the repertory grid
technique; Edwards et al. (2009) discuss its role within software engineering.

Sample studies are among the most common in software engineering (Stol and
Fitzgerald 2018). Kitchenham and Pfleeger (2002) have published a six-part series
of guidelines in ACM Software Engineering Notes. Chapter “Challenges in Survey
Research” in this book also discuss sample studies. Studies that use samples of
development artifacts from software repositories such as GitHub are extremely
common as well. Kalliamvakou et al. (2016) offer useful guidance to address the
many pitfalls in such studies.

5.5 Formal Theory and Computer Simulations

An important category of research that is often overlooked due to the strong focus on
empirical methods is non-empirical research. The two strategies defined in the ABC
framework, Formal Theory and Computer Simulations, are both useful approaches
that can complement empirical methods in a variety of ways. In earlier work,
we coined the concept of theory-oriented software engineering, emphasizing that
research studies consist of elements from three different ‘domains’: the substantive
domain, representing some phenomenon of interest, the methodological domain,
representing the variety of methods to study that phenomenon, and the conceptual
domain, which represents any theoretical construct or framework to design a study
or make sense of its findings. While most researchers are familiar with so-called
variance theories, which seek to link different measurable constructs, Ralph (2018)
provides methodological guidelines for so-called process theories. It is worth noting
that Grounded Theory is often associated with theory development (as the name
suggests), but as we pointed out earlier, Grounded Theory studies tend to result
in substantive theories, rather than formal theories—the latter exhibiting a higher
degree of generalizability (Glaser 1978). Several useful resources on computer
simulation research are available. Müller and Pfahl (2008) provide a good starting
point, and chapter “The Role of Simulation-Based Studies in Software Engineering
Research” in this book provide additional details.

5.6 Solution-seeking Research

The recommended sources listed above focus on knowledge-seeking research. For
those researchers who seek to conduct solution-seeking research, we suggest the
following sources as a good starting point.

Much of the research published in the flagship conference of our field, the
International Conference on Software Engineering (ICSE) tends to present solution-
seeking research, by means of a new tool, technique, algorithm, or process. Such
papers also include an evaluation of the proposed solution using a knowledge-

32 K.-J. Stol and B. Fitzgerald

seeking strategy. Shaw (2003) presented an analysis of all submitted research
papers to ICSE 2002, and sought to distill “patterns” of what constitutes good
research in software engineering. Wieringa and Heerkens (2006) has discussed
methodological soundness of papers within the requirements engineering domain,
and has offered a paper classification and evaluation criteria (Wieringa et al. 2006)
to help researchers distinguish between different types of research. In later work,
Wieringa (2009) linked this more explicitly to Design Science. Hevner et al. (2004)
has discussed Design Science in Information Systems research, a field of research
that has considerable overlap with software engineering closely. Design Science is
also the topic of chapter “The Design Science Paradigm as a Frame for Empirical
Software Engineering.”

6 Conclusion

Issues to do with research methodology are receiving increased attention in SE
research. However, the field suffers from inconsistent use of terminology and
the lack of an integrated and holistic framework within which to categorize
research strategies. We seek to provide both consistent terminology and a holistic
and integrated framework—the ABC framework. While consistency in labeling
research methods may remain challenging to achieve, the ABC framework (with
origins in the social sciences (McGrath 1984)) offers useful terminology for what
we have labeled research strategies.

In this chapter, we describe the two modes of software engineering research
and position them within the wider context of conducting software engineering
research (Fig. 1): knowledge-seeking and solution-seeking research. Whereas the
ABC framework positions eight archetypal research strategies that can be used to
conduct knowledge-seeking research, we link Design Science to solution-seeking
research. Design Science is discussed in detail in chapter “The Design Science
Paradigm as a Frame for Empirical Software Engineering” of this book , which
is why we do not discuss this further. Design Science complements the ABC
framework, as suggested in Fig. 1; hence, we suggest that the ‘ABC’ is followed by
a ‘D,’ with D for Design Science.

In addition to providing descriptions, metaphors, and references for each research
strategy, we offer practical guidelines to help SE researchers select an appropriate
research strategy.

The ABC framework is useful in several ways. First, it offers a systematic
approach to explore the landscape of knowledge-seeking research, and as such it
serves the purpose of a tutorial. Second, the ABC framework can be used to design
a research programme as illustrated in this chapter. Third, the ABC framework
can also be used in a reflective manner, for example by categorizing studies as
part of a systematic literature review—most systematic reviews organize studies
by their research method as claimed by the studies’ authors. However, due to the
confusion that exists within the software engineering field (we elaborate on this point

Guidelines for Conducting Software Engineering Research 33

elsewhere (Stol and Fitzgerald 2018)), in many cases studies are mis-characterized,
which leads to a misrepresentation of a research area when presented in a systematic
review. We hope the re-discovery of McGrath’s circumplex and its introduction to
the software engineering field helps to address this issue.

Acknowledgements This work was supported, in part, by Science Foundation Ireland grant
15/SIRG/3293 and 13/RC/2094 and cofunded under the European Regional Development Fund
through the Southern & Eastern Regional Operational Programme to Lero—the Irish Software
Research Centre (http://www.lero.ie).

References

Australian Electoral Commission (2016) Australian electoral commission image li-
brary, 2016 federal election. opening the house of representatives ballot pa-
pers (election night). https://upload.wikimedia.org/wikipedia/commons/9/93/
AEC-Senate-election-night-opening.jpg, distributed under Creative Commons CC
BY 3.0, https://creativecommons.org/licenses/by/3.0

Barcomb A (2019) Retaining and managing episodic contributors in free/libre/open source
software communities. PhD thesis, University of Limerick

Barcomb A, Kaufmann A, Riehle D, Stol KJ, Fitzgerald B (2019a) Uncovering the periphery: A
qualitative survey of episodic volunteering in free/libre and open source software communities.
Transactions on Software Engineering in press

Barcomb A, Stol KJ, Riehle D, Fitzgerald B (2019b) Why do episodic volunteers stay in FLOSS
communities? In: Proceedings of the 41st International Conference on Software Engineering,
ACM, New York, NY, pp 948–959

Barcomb A, Stol K, Fitzgerald B, Riehle D (2020) Managing episodic volunteers in free/libre/
open source software communities. IEEE Trans Softw Eng (in press)

Bos N, Sadat Shami N, Olson J, Cheshin A, Nan N (2004) In-group/out-group effects in
distributed teams: An experimental simulation. In: Proceedings of the International Conference
on Computer-Supported Cooperative Work and Social Computing (CSCW’04), ACM, pp
429–436

Bourgeois L (1979) Toward a method of middle-range theorizing. The Academy of Management
Review 4(3):443–447

Dalkey N, Helmer O (1963) An experimental application of the delphi method to the use of
experts. Management Science 9(3):458–467

Damschen E, Baker D, Bohrer G, Nathan R, Orrock J, R Turner J, Brudvig L, Haddad N, Levey D,
Tewksbury J (2014) How fragmentation and corridors affect wind dynamics and seed dispersal
in open habitats. Proceedings of the National Academy of Sciences of the United States of
America 111(9):3484–3489, DOI 10.1073/pnas.1308968111

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical methods for software
engineering research. In: Shull F, Singer J, Sjøberg DI (eds) Guide to Advanced Software
Engineering, Springer

Ebert C, Parro C, Suttels R, Kolarczyk H (2001) Better validation in a world-wide develop-
ment environment. In: Proceedings of the 7th International Software Metrics Symposium
(METRICS)

Edwards H, McDonald S, Young M (2009) The repertory grid technique: Its place in empirical
software engineering research. Inform Software Tech 51(4):785–798

Fayerollinson (2010) The victorian civil courtroom at the national justice museum.
https://commons.wikimedia.org/wiki/File:Victorian_Civil_Courtroom,

http://www.lero.ie
https://upload.wikimedia.org/wikipedia/commons/9/93/AEC-Senate-election-night-opening.jpg
https://upload.wikimedia.org/wikipedia/commons/9/93/AEC-Senate-election-night-opening.jpg
https://creativecommons.org/licenses/by/3.0
https://commons.wikimedia.org/wiki/File:Victorian_Civil_Courtroom,_National_Justice_Museum,_June_2010.jpg

34 K.-J. Stol and B. Fitzgerald

_National_Justice_Museum,_June_2010.jpg, distributed under Creative Commons
BY-SA 3.0, https://creativecommons.org/licenses/by-sa/3.0)

Fitzgerald B, Stol KJ, O’Sullivan R, O’Brien D (2013) Scaling agile methods to regulated
environments: An industry case study. In: Proceedings of the 2013 International Conference
on Software Engineering, IEEE Press, pp 863–872

Glaser B (1978) Theoretical Sensitivity. The Sociology Press
Glaser B, Strauss A (1967) The Discovery of Grounded Theory. AldineTransaction
Glass RL, Vessey I, Ramesh V (2002) Research in software engineering: an analysis of the

literature. Information and Software Technology 44(8):491–506
Hassan NR (2015) Seeking middle-range theories in information systems research. In: Proceedings

of the 36th International Conference on Information Systems
Hevner A, March S, Park J, Ram S (2004) Design science in information systems research. MIS

Quarterly 28(1):75–105
Hoda R, Noble J, Marshall S (2013) Self-organizing roles on agile software development teams.

IEEE Transactions on Software Engineering 39(3):422–444
Jiang S, McMillan C, Santelices R (2017) Do programmers do change impact analysis in

debugging? Empir Software Eng 22(2):631–669
Juristo N, Moreno A (2001) Basics of Software Engineering Experimentation. Springer Sci-

ence+Business Media, LLC
Kalliamvakou E, Gousios G, Blincoe K, Singer L, German D, Damian D (2016) An in-depth study

of the promises and perils of mining github. Empirical Software Engineering 21(5):2035–2071
Kitchenham B, Pfleeger S (2002) Principles of survey research part 2: Designing a survey. ACM

Software Engineering Notes 27(1)
Kitchenham B, Pfleeger S, Pickard L, Jones P, Hoaglin D, Emam KE, Rosenberg J (2002)

Preliminary guidelines for empirical research in software engineering. IEEE Trans Softw Eng
28(8):721–734

Kitchenham B, Dybå T, Jørgensen M (2004) Evidence-based software engineering. In: Proceedings
of the 26th International Conference on Software Engineering, pp 273–281

Kontio J, Bragge J, Lehtola L (2008) The focus group method as an empirical tool in software
engineering. In: Guide to Advanced Empirical Software Engineering, Springer

Krafft M, Stol K, Fitgerald B (2016) How do free/open source developers pick their tools? a
Delphi study of the Debian project. In: Proceedings of the 38th ACM/IEEE International
Conference on Software Engineering (SEIP), pp 232–241

Lee A, Baskerville R (2003) Generalizing generalizability in information systems research.
Information Systems Research 14:221–243, DOI 10.1287/isre.14.3.221.16560

Lethbridge T, Sim S, Singer J (2005) Studying software engineers: Data collection techniques for
software field studies. Empir Software Eng 10:311–341

Li Y, Yue T, Ali S, Zhang L (2017) Zen-ReqOptimizer: a search-based approach for requirements
assignment optimization. Empir Software Eng 22(1):175–234

Linstone H, Turoff M (eds) (2002) The Delphi Method Techniques and Applications. Addison-
Wesley

March ST, Smith G (1995) Design and natural science research on information technology.
Decision Support Systems 15(4):251–266

maxpixelnet (no date) Creative Commons CC0 1.0 Universal. https://www.maxpixel.net/
Nature-Green-Jungle-Animals-Fauna-Forest-3828424

McGrath JE (1981) Dilemmatics: The study of research choices and dilemmas. Am Behav Sci
25(2):179–210

McGrath JE (1984) Groups: Interaction and Performance. Prentice Hall
McGrath JE (1995) Methodology matters: Doing research in the behavioral sciences. In: Baecker

R, Grudin J, Buxton W, Greenberg S (eds) Readings in Human Computer Interaction: Toward
the Year 2000, 2nd edn, Morgan Kaufmann Publishers, Inc., pp 152–169

Méndez Fernández D, Passoth JH (2019) Empirical software engineering: From discipline to
interdiscipline. The Journal of Systems and Software 148:170–179

https://commons.wikimedia.org/wiki/File:Victorian_Civil_Courtroom,_National_Justice_Museum,_June_2010.jpg
https://commons.wikimedia.org/wiki/File:Victorian_Civil_Courtroom,_National_Justice_Museum,_June_2010.jpg
https://creativecommons.org/licenses/by-sa/3.0)
https://www.maxpixel.net/Nature-Green-Jungle-Animals-Fauna-Forest-3828424
https://www.maxpixel.net/Nature-Green-Jungle-Animals-Fauna-Forest-3828424

Guidelines for Conducting Software Engineering Research 35

Merton RK (1968) Social theory and social structure. Free Press
Mockus A, Fielding R, Herbsleb J (2000) A case study of open source software development: the

Apache server. In: Proc. International Conf. Software Engineering
Müller M, Pfahl D (2008) Simulation methods. In: Shull F, Singer J, Sjøberg DI (eds) Guide to

Advanced Software Engineering, Springer
Niknafs A, Berry D (2017) The impact of domain knowledge on the effectiveness of requirements

engineering activities. Empir Software Eng 22(1):80–133
Nisbett R (2005) The Geography of Thought: How Asians and Westerners Think Differently and

Why. Nicholas Brealey Publishing
Ralph P (2015) The sensemaking-coevolution-implementation theory of software design. Science

of Computer Programming 101:21–41
Ralph P (2018) Toward methodological guidelines for process theories and taxonomies in software

engineering. IEEE Transactions on Software Engineering in press
Runeson P, Höst M, Rainer A, Regnell B (2012) Case Study Research in Software Engineering:

Guidelines and Examples. Wiley
Runkel PJ, McGrath JE (1972) Research on Human Behavior: A Systematic Guide to Method.

Holt, Rinehart and Winston, Inc.
Russo D, Stol K (2019) Soft theory: a pragmatic alternative to conduct quantitative empirical

studies. In: Proceedings of the Joint 7th International Workshop on Conducting Empirical
Studies in Industry and 6th International Workshop on Software Engineering Research and
Industrial Practice, CESSER-IP@ICSE 2019, Montreal, QC, Canada, May 27, 2019, pp 30–33

Seaman CB (1999) Qualitative methods in empirical studies of software engineering. IEEE
Transactions on Software Engineering 24(4):557–572

Setamanit SO (2007) A software process simulation model of global software development (GSD)
projects. PhD thesis, Portland State University

Setamanit SO, Wakeland W, Raffo D (2007) Using simulation to evaluate global software
development task allocation strategies. Softw Process Improve Pract 12:491–503

Sharma G, Stol KJ (2020) Exploring onboarding success, organizational fit, and turnover intention
of software professionals. Journal of Systems and Software 159(110442)

Sharp H, Dittrich Y, de Souza C (2016) The role of ethnographicstudies in empirical software
engineering. IEEE Trans Softw Eng 42(8):786–804

Shaw M (2003) Writing good software engineering research papers. In: Proc. 25th International
Conf. Software Engineering, pp 726–736

Sim S, Easterbrook S, Holt R (2003) Using benchmarking to advance research: A challenge to
software engineering. In: Proc. 25th International Conference on Software Engineering, IEEE
Computer Society

Simon H (1996) The Sciences of the Artificial, 3rd edn. MIT Press
Singer J, Storey MA, Sim SE (2000) Beg, borrow, or steal: Using multidisciplinary approaches in

empirical software engineering research. In: Proceedings of the International Conference on
Software Engineering

Spinellis D, Avgeriou P (2019) Evolution of the unix system architecture: An exploratory case
study. IEEE Transactions on Software Engineering in press

Stol K, Fitzgerald B (2015) Theory-oriented software engineering. Science of Computer Program-
ming 101:79–98

Stol K, Fitzgerald B (2018) The ABC of software engineering research. ACM Transactions on
Software Engineering and Methodology 27(3)

Stol K, Goedicke M, Jacobson I (2016a) Introduction to the special section—general theories of
software engineering: New advances and implications for research. Information and Software
Technology 70:176–180

Stol K, Ralph P, Fitzgerald B (2016b) Grounded theory in software engineering research: A critical
review and guidelines. In: Proceedings of the 38th International Conference on Software
Engineering, ACM, pp 120–131

36 K.-J. Stol and B. Fitzgerald

Stol K, Caglayan B, Fitzgerald B (2017) Competition-based crowdsourcing software development:
A multi-method study from a customer perspective. IEEE Transactions on Software Engineering
45(3):237–260

Storey MD, Zagalsky A, Filho FMF, Singer L, Germán DM (2017) How social and communication
channels shape and challenge a participatory culture in software development. IEEE Trans
Software Eng 43(2):185–204, DOI 10.1109/TSE.2016.2584053

SuperJet International (2011) Full flight simulator. https://www.flickr.com/photos/
superjetinternational/5573438825, distributed under Creative Commons CC BY 2.0,
https://creativecommons.org/licenses/by-sa/2.0/legalcode

Tyndall J (1896) Fragment of science, volume one. Taken from an electronic copy of the book
at Archive.Org (1896 edition of the book) and subsequently annotated in colored typeface.
Public Domain, https://commons.wikimedia.org/w/index.php?curid=57653822

Wieringa R (2009) Design science as nested problem solving. In: Proceedings of the 4th
International Conference on Design Science Research in Information Systems and Technology,
DESRIST ’09, ACM

Wieringa R, Heerkens M (2006) The methodological soundness of requirements engineering
papers: a conceptual framework and two case studies. Requir Eng 11:295–307

Wieringa R, Maiden N, Mead N, Rolland C (2006) Requirements engineering paper classification
and evaluation criteria: a proposal and a discussion. Requir Eng 11:102–107

Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslén A (2012) Experimentation in
Software Engineering, 2nd edn. Springer

Wohlin C, Smite D, Moe NB (2015) A general theory of software engineering: Balancing human,
social and organizational capitals. The Journal of Systems and Software 109

Yin R (2014) Case Study Research Design and Methods, 5th edn. CA: Sage Publications Inc.

https://www.flickr.com/photos/superjetinternational/5573438825
https://www.flickr.com/photos/superjetinternational/5573438825
https://creativecommons.org/licenses/by-sa/2.0/legalcode
https://commons.wikimedia.org/w/index.php?curid=57653822

	Guidelines for Conducting Software Engineering Research
	Klaas-Jan Stol https://orcid.org/0000-0002-1038-5050敳敲癥摀搠= *,clip,scale=0.1orcid.png and Brian Fitzgerald https://orcid.org/0000-0001-9193-2863敳敲癥摀搠= *,clip,scale=0.1orcid.png
	Introduction
	Foundations
	Knowledge-Seeking vs. Solution-Seeking Research
	Two Dimensions of Research: Obtrusivenessand Generalizability
	Research Settings
	The ABC of Software Engineering Research

	Strategies for Software Engineering Research
	Field Studies
	Field Experiments
	Experimental Simulations
	Laboratory Experiments
	Judgment Studies
	Sample Studies
	Formal Theory
	Computer Simulations

	Applying the ABC Framework
	Recommended Further Reading
	Empirical Studies in Software Engineering
	Field Studies
	Experimental Studies
	Judgment Studies and Sample Studies
	Formal Theory and Computer Simulations
	Solution-seeking Research

	Conclusion
	References

